
Development of On-Chip
Communication Fault-Resilient Adaptive

Architectures and Algorithms for
3D-IC Technologies

Dang Nam Khanh

a dissertation
submitted in fulfillment of the requirements

for the degree of doctor of philosophy
in computer science and engineering

Graduate Department of Computer and Information Systems
The University of Aizu

2017



Copyright by 2017 – Dang Nam Khanh
All Rights Reserved.







Contents

1 Introduction 1
1.1 Computing Architecture: The Road to Multi-Core Era . . . . . . . . . . . . . 2
1.2 Motivation: Interconnection Reliability Crisis . . . . . . . . . . . . . . . . . . 7
1.3 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 3D Integration and Network-on-Chip 15
2.1 3D Integration Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 3D Integration Methodologies . . . . . . . . . . . . . . . . . . . . . . 17

TSV-based 3D Integration . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Challenges of 3D-integration . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Dissertation focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Interconnection Reliability Crisis . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 3D Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 3D FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 3D Microprocessors and Memories . . . . . . . . . . . . . . . . . . . 27
2.3.3 3D-Network-on-Chips . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 3D-NoCs: Design for Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Fault-Tolerance for 3D NoCs . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Related Works 35
3.1 Fault-Tolerance Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Architecture approach . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Hard Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Soft Error Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TSV Defect Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Software approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Hard Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Soft Error Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
TSV Defect Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Integration approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Hard Fault and Soft Error Tolerance . . . . . . . . . . . . . . . . . . . 42
TSV Defect Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



4 Hard Fault and Soft Error Tolerant Architecture 47
4.1 Adaptive 3D Router Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Hard Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Fault-tolerant routing algorithm . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Buffer Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Crossbar Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Soft Error Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Error Correction Code . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Detection, Diagnosis and Recovery Mechanism . . . . . . . . . . . . . . . . . . 58
4.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Complexity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Latency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.4 Throughput Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Scalable TSV-Cluster Fault-Tolerance 69
5.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Proposed TSV Fault Tolerance Architecture . . . . . . . . . . . . . . . . . . . 70

5.2.1 Fault assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Sharing Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Adaptive Online Sharing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Weight Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 TSV-clusters return . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Weight adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.4 Design optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Virtual TSV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Serialization Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Defect-rate evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 86

Latency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Throughput Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.4 Router Hardware Complexity . . . . . . . . . . . . . . . . . . . . . . 88
5.4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Reliability Assessment for 3D-NoCs 95
6.1 Fault-tolerant Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Markov-state Model and Assessment Definitions . . . . . . . . . . . . . . . . . 97

6.2.1 Markov State model overview . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Classified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Quantitative Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Conquering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Strategy 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vi



Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Strategy 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.2 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Router merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Network merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 MTTF Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.2 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5.3 Reliability Assessment Speedup . . . . . . . . . . . . . . . . . . . . . 119

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 TSV-based 3D-NoC System Design 123
7.1 Design for Reliability and Dissertation Approach . . . . . . . . . . . . . . . . . 124

7.1.1 Design for Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.2 Dissertation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.3 Dissertation Goals and Discussions . . . . . . . . . . . . . . . . . . . 126

7.2 Design with Through-Silicon-Via . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Design of 3D-NoC systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2 Preliminary Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.3 Detail Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Monte-Carlo MTTF simulation . . . . . . . . . . . . . . . . . . . . . 133
TSV Placement Calculation . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4.1 Hardware Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 140

Latency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Throughput Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Conclusion and Future Work 143

References 162

Appendix A Benchmarks 163
A.1 Synthetic Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2 Realistic Traffic Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Appendix B TSV Router 169

vii





List of Figures

1.1 Many-core system complexity trends. . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Wire vs. gate delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A comparison between alternative design implementations: (a) Separated chips;

(b) System-on-Chip; (c) Wire-bonding-based 3D-ICs; (d) TSV-based 3D-ICs. 6
1.4 3D-NoCs as one of the future solutions for computing paradigms and the pre-

dicted reliability issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Dissertation structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Footprint and wire length reduction in 3D-stacked structures. . . . . . . . . . . 17
2.2 3D integration methodologies: (a) Wire bonding; (b) Solder balls; (c) Through

Silicon Vias; (d) Wireless stacking. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 TSV fabrication technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Process flow of a 3D-Cu TSV technology: Die-to-wafer stacking is performed

with simultaneous Cu-Cu thermo-compression to create mechanical and electri-
cal connections simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Illustration of faults: (a) Open wire defect (hard fault); (b) Single event transient
(soft error). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Taxonomy of reliability issues in 3D-ICs. . . . . . . . . . . . . . . . . . . . . . 24
2.7 TSV defects: (a) Void; (b) Pinch-off. . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 TSVRCmodeling: (a)HealthyTSV; (b)Open defect TSV; (c) Short-to-substrate

TSV; (d) Bridge TSVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 FPGA design: (a) 2D-FPGA structure; (b) 3D-FPGA structure; (c) 2D Switch

Box (SB); (d) 3D Switch Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 3D architectures: (a) 3D Microprocessors and memories systems; (b) DDR3

emory block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11 Structure of a typical 3D Network-on-Chip system. . . . . . . . . . . . . . . . 30
2.12 Network-on-Chip simplified block diagram. . . . . . . . . . . . . . . . . . . . 30
2.13 Design for Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Hard fault tolerance using architectural approaches: (a) Redundancy with check-
ing; (b) Redundancy with majority voting; (c) Self-configuration. . . . . . . . . 37

3.2 Hard fault tolerance using routing approaches: (a) Spare wire; (b) Fault-tolerant
routing; (c) Split routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 TSV Fault Tolerance: (a) Redundancy Technique; (b) Double TSV; (c) Network
TSV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Software approach: (a) Program redundancies; (b) Checkpoint/Restart and Roll-
back. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Razor D Flip-flop: (a) Architecture; (b) Waveform. . . . . . . . . . . . . . . . 42
3.6 Monte-Carlo Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



4.1 Adaptive 3D router (SHER-3DR) architecture. . . . . . . . . . . . . . . . . . . 48
4.2 Hard-fault tolerant mechanism: (a) Random Access Buffer (RAB); (b) Bypass-

Link-on-Demand (BLoD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 High-level view of the soft-hard error recovery approach: (a) 3D-Mesh based

NoC configuration; (b) Tile organization; (c) SHER-3DR router organization;
(d) Input-Port; (e) Switch allocation unit. . . . . . . . . . . . . . . . . . . . . . 54

4.4 SHER-3DR working demonstration. . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Router-to-Router interfacing and DDRM scheme. . . . . . . . . . . . . . . . . 57
4.6 Area cost and power consumption analysis. . . . . . . . . . . . . . . . . . . . . 64
4.7 Layout of a single SHER-3DR router for the 3D-FETO system. The SHER-

3DR router was designed in Verilog-HDL and synthesized using 45nm technol-
ogy library. For theThrough SiliconVia (TSV) integration, we used FreePDK3D45
kit compiler. The SHER-3DR router is designed on a µm × µm and the
TSV array contains 208 TSVs. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Average packet latency evaluation of the synthetic benchmarks. . . . . . . . . . 66
4.9 Average packet latency evaluation of the realistic benchmarks. . . . . . . . . . . 67
4.10 Throughput evaluation of the synthetic benchmarks. . . . . . . . . . . . . . . . 68

5.1 Simplified block diagram illustrating the proposed system structure. . . . . . . . 71
5.2 TSV sharing area placement and connectivity between two neighboring routers. . 72
5.3 The TSV fault-tolerance architecture: (a) Router wrapper; (b) Connection be-

tween two layers. Red rectangles represent TSVs. S-UP and S-DOWN are the
sharing arbitrators which manage the proposed mechanism. CR stands for con-
figuration register and W is the flit width. . . . . . . . . . . . . . . . . . . . . 73

5.4 An example of the sharing algorithm on a  ×  layer: (a) Initial state with ten
defected TSV-clusters; (b) Best candidates selection; (c) Borrowing chain creation
and selection refining. (d) Final result with six disabled routers. . . . . . . . . . 75

5.5 Example of the weight adjustment performed to disable routers’ sharing: (a) Be-
fore weight update; (b) After weight update. . . . . . . . . . . . . . . . . . . . 79

5.6 Examples of Virtual TSV: (a) return the TSV-cluster to the original router; (b)
borrow a cluster from a higher weight router. . . . . . . . . . . . . . . . . . . . 81

5.7 Example of Virtual TSV timing diagram. . . . . . . . . . . . . . . . . . . . . . 81
5.8 Circuit of 1:4 Serialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Defect-rate evaluation with different layer sizes: (a) ×  (4 routers, 16 TSV

clusters); (b) ×  (16 routers, 64 TSV clusters); (c) ×  (64 routers, 256 TSV
clusters); (d) ×  (256 routers, 1024 TSV clusters); (e) ×  (1024 routers,
4096 TSV clusters); (f ) ×  (4096 routers, 16384 TSV clusters). . . . . . . . 84

5.10 Evaluation result: (a) Average Packet Latency; (b) Throughput. . . . . . . . . . 89
5.11 Single layer layout illustrating the TSV sharing areas (red boxes). The layout size

is µm× µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Redundancy fault-tolerant models: (a) Check and recovery; (b) Majority voting. 96
6.2 Self-configuration fault-tolerant models. . . . . . . . . . . . . . . . . . . . . . 97
6.3 A Markov-state reliability model for an m states system with n non-faulty states. 98
6.4 Classified Model: (a) Model 1 - Spare, (b) Model 3 - Error handling. . . . . . . 101
6.5 Reliability Assessments for Fault-Tolerant Network-on-Chip. . . . . . . . . . . 102
6.6 A Markov-state reliability model for spare modules. . . . . . . . . . . . . . . . 103
6.7 A simplified Markov-state reliability model for (a) the original system; (b) the

fault-tolerant (FT) system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



6.8 A Markov state of a mesh-based network. . . . . . . . . . . . . . . . . . . . . 112
6.9 Monte-Carlo setting up flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.10 Error Injector architecture (a) Single output gate, (b) Flip-flop with two outputs. 116
6.11 MTTF Monte-Carlo simulation process. . . . . . . . . . . . . . . . . . . . . . 117
6.12 Comparison results with gate ratio distributions. . . . . . . . . . . . . . . . . . 118
6.13 Comparison results with weight distributions. . . . . . . . . . . . . . . . . . . . 119

7.1 Design for Reliability: Dissertation scope. . . . . . . . . . . . . . . . . . . . . . 124
7.2 Design flow for fault-resilient 3D-ICs: (a) Traditional flow; (b) Dissertation ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 Layout of a TSV from a LEF macro definition. Values: A = ., B = .,

C = , D =  and E = .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 Design flow for TSVs. Green boxes are the results from their processes. Blue and

pink boxes are the processes and sub-processes, respectively. . . . . . . . . . . . 129
7.5 Sketch of ×  layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6 Example layout of models with TSV: (a) a single SHER-3DR router for the 3D-

FETO system (see Chapter 4), #TSV: 208; (b) a layer of ×  3D routers, #TSV:
656. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.7 Network-on-Chip system specification. . . . . . . . . . . . . . . . . . . . . . . 132
7.8 Test flow for 3D-ICs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.9 List of files in the design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.10 Flow chart of error injector inserting. . . . . . . . . . . . . . . . . . . . . . . . 135
7.11 Fault trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12 An example of input and output of the netlist processing. . . . . . . . . . . . . . 136
7.13 Netlist processing for multiple modules file. . . . . . . . . . . . . . . . . . . . . 137
7.14 MTTF Monte-Carlo simulation process. . . . . . . . . . . . . . . . . . . . . . 138
7.15 An example of layer layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.16 Layout of a ×  layer: (a) 3D-FETO; (b) 3D-FETO + TSV Fault-Tolerance. . 140
7.17 Evaluation result: (a) Average Packet Latency; (b) Throughput. . . . . . . . . . 141

A.1 H.264 Task Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2 H.264 Task Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.3 VOPD Task Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.4 MWD Task Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.5 PIP Task Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xi





List of Tables

1.1 Interconnects delay domination over technology scaling . . . . . . . . . . . . . 5

2.1 3D and 2D technologies comparison. . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 TSV Defect Rate Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Performance and power enhancement of 3D over 2D architectures. . . . . . . . 28

3.1 Taxonomy of different error recovery protocols and architectures in NoCs. Clas-
sification: ”A” for architecture, ”S” for software and ”I” for integration. . . . . . . 36

3.2 Reliability assessment methodologies. . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Simulation configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Hardware complexity evaluation and comparison results. . . . . . . . . . . . . . 62

5.1 Configuration register (CR) description. . . . . . . . . . . . . . . . . . . . . . 74
5.2 Technology parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 System configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Simulation configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Hardware complexity of a single router. . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Comparison results between the proposed approach and the existing works. . . . 92

6.1 Router’s Weight and Gate Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Simulation configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Reliability Assessment Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1 Estimated development time of the fault-tolerant 3D-NoC executed by a single
developer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Dissertation goals and the proposed methodologies. . . . . . . . . . . . . . . . 127
7.3 Technology parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 System configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5 Hardware complexity of a single router. . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Description of benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xiii





List of Abbreviations

2D-NoC Two dimensional Network-on-Chip
3D-IC Three dimensional Integrated Circuit
3D-NoC Three dimensional Network-on-Chip
3D-SIC Three dimensional Stacked Integrated Circuit
ASIC Application-Specific Integrated Circuit
BLoD Bypass-Link-on-Demand
CAC Crosstalk Avoidance Codes
CAD Computer-Aided Design
CMOS Complementary Metal Oxide Silicon
CPU Central Processing Unit
CT Crossbar Traversal stage
DfR Design for Reliability
DSM Deep Sub-micron
DRAM Dynamic Random Access Memory
ECC Error Correction Codes
EM Electromigration
FAIT Fabrication, Assembly, Integration and Test
FIFO First-In-First-Out
HDL Hardware Description Language
IC Integrated Circuit
ITRS International Technology Roadmap for Semiconductors
KoZ keep-out-zone
LAFT Look-Ahead-Fault-Tolerant
NI Network Interface
NMR N-Modular Redundancy
NoC Network-on-Chip
NPC Next-Port-Calculation stage
P&R Place and Route step
PE Processing Element
PV Process Variation
RAB Random-Access-Buffer
RC Routing Computation stage
RTL Register-Transfer Level

xv



SA Switch Allocation stage
SAIF Switching Activity Interchange Format
SDF Standard Delay Format
SoC System-on-Chip
SSD Solid State Drive
TSV Through Silicon Via
WLP Wafer Level Packaging

xvi



To my parents and my family.





Acknowledgments

I would like to express my thanks and gratitude to Prof. Abderazek Ben Abdallah for his sup-
port, encouragement, and guidance to achieve this project. Also, I would like to thank Prof. Toshi-
aki Miyazaki, Prof. Tsuneo Tsukahara, Prof. Junji Kitamichi of The University of Aizu and Prof.
Tomohiro Yoneda of National Institute of Informatics for taking the time to revise my thesis.

Moreover, my sincere gratitude to Prof. Yuichi Okuyama for his help and support during the
past three years. I also would like to thank Prof. Xuan-Tu Tran for leading me into this research
field and his supports, and Dr. Akram Ben Ahmed of Keio University for his help on the NoC
platform and the later works.

I want to thank all the members of the Adaptive Systems Laboratory and my friends at the
University of Aizu. Their supportive words and encouraging messages kept me motivated to work
harder and be a better researcher and person. Not to forget to appreciate the staff of the University
of Aizu for their assistance.

My gratitude to my mom and my dad, who have been strongly supporting me through my whole
life. They have been inspiring and pushing me to achieve my goals. And to my dear adoptive
parents, who encouraged me in all aspects of my life and I am happy to have them. I also thank my
big family for their support, to my friends whom I spent hours talking to, for helping me passing
through countless tough times.

This thesis document partly belongs to OASIS - a Network-on-Chip project, in Adaptive Sys-
tems Laboratory, The University of Aizu. I inherited the basic router design, the hard fault tolerant
mechanisms and the TSV tutorial from the senior students’ works. I would like to thank all of
them for the solid platforms that allowed me to achieve a part of this research.

xix





Thesis advisor: Professor Abderazek Ben Abdallah Dang Nam Khanh

Development of On-Chip Communication Fault-Resilient
Adaptive Architectures and Algorithms for

3D-IC Technologies
Abstract

Multicore processing is predicted to be the backbone of future complex embedded architec-
tures. By distributing the tasks into multiple processing elements, the system’s frequency and
operation voltage can be reduced; thus, a decrease in total power consumption can be obtained.
However, due to the high complexity in terms of organization, communication and operation,
multicore processing demands in high scalability, efficient bandwidth, and better power efficiency
solution have become primordial. Notably, wires have overcome gates to become the most domi-
nant source of delay in the deep sub-micron era. Consequently, the power consumption caused by
additional buffers and wires is considered as a critical obstacle. Moreover, conventional commu-
nication paradigms (e.g., bus, point-to-point) also encounter several scalability and latency issues.
In the past few years, the benefits of 3D Integrated Circuits (3D-ICs) and mesh-based Network-
on-Chips (NoCs) have been fused into a promising architecture, called 3D-Network-on-Chip
(3D-NoC). In fact, the scalability and parallelism of NoCs can be enhanced in the third dimen-
sion thanks to the short wire length and the low power consumption of 3D-ICs interconnects.
As a result, the 3D-NoC paradigm is considered to be one of the most advanced and auspicious
architectures for the future of IC designs, as it is capable of providing extremely high bandwidth,
efficient scalability and low power interconnects.

While the 3D-NoC paradigm has been increasing in popularity with several commercial chips,
it is threatened by the decreasing reliability of aggressively scaled transistors as they are approaching
the fundamental physical limits. In deep sub-micron processes, gates have become more vulner-
able to soft errors which can affect the operation accuracy of control logics and buffers in NoCs’
routers; thus, leading to chip failure. In addition, low supply voltages enforce a very narrow noise
margin, which makes the architecture more vulnerable and more sensitive to faults. In particular,
hard faults, including both permanent and intermittent, can occur during the manufacturing stage
or under specific operating circumstances. Because the intermittent faults do not permanently
damage a given component, they can pass through several testing stages, but can still cause oper-
ating failures. Furthermore, and by shifting to 3D-ICs, 3D-NoCs are introduced to a new major
challenge. That is, the high probability for TSV (Through Silicon Via) defects to occur. With high
defect-rates and the clustering effect, TSVs need a proper fault-tolerance methodology to ensure
the overall reliability. By accumulating all the failure sources, 3D-NoCs’ reliability is expected to
be one of the most critical issues in future System-on-Chips (SoCs) designs.

Due to the numerous types of faults, many studies have proposed solutions for various individual
aspects of on-chip reliability; however, a comprehensive approach encompassing soft errors, hard

xxi



faults, and TSV defects pertaining to NoCs’ reliability has yet to evolve. In addition, the error
detection and diagnosis in 3D-NoC architectures have been studied thoroughly in the scope of
offline-testing. On the other hand, with soft errors and intermittent faults becoming a dominant
failure mode in modern NoCs and general VLSI systems, a widespread deployment of online-
testing approaches has become crucial.

In addition to the variety and complexity of failure modes, the rapid development of fault-
tolerance for NoC has become exposed to a new challenge: NoCs’ reliability needs to be evaluated
and quantitatively assessed in the early design stages. As a matter of fact, most of the existing eval-
uation methodologies use the simple fault insertion and correctness-verification method. Such a
method only ensures the functionality of a given technique. Moreover, this type of evaluation re-
quires the complete design to be performed which may lead to a significant redesign time risk. To
solve this issue, early reliability assessment is needed. After satisfying the performance require-
ments in the early assessment stage, the reliability of the design is also needed to be fully simulated
and analyzed.

Starting from the above facts, fault resilient adaptive architectures and algorithms for 3D-ICs,
especially for 3D-NoCs based systems, are developed in this research. With the aid of efficient
detection, diagnosis and recovery mechanisms and algorithms, the proposed system is capable of
detecting and recovering from soft errors occurring in the routing pipeline stages. It also lever-
ages configurable components to handle permanent faults’ occurrences in links, input buffers, and
crossbars by adopting our previous works. For integrating these hard error fault tolerant tech-
niques, a detection, diagnosis, and recovery mechanism is proposed. This mechanism analyzes the
transmitting operation and its failure state to determine the fault’s position. Based on the position
of the fault, it issues signals to handle it. Moreover, this work also proposes a dedicated fault-
tolerant technique for TSV-cluster defects, which are the most vulnerable components of 3D-IC
technology.

From another important perspective, this work presents a platform of reliability assessment for
NoC systems. An analytical is used to help designers quickly estimate the efficiency of potential
fault tolerant schemes. The result of this assessment can indicate the reliability enhancement of
the evaluated technique. Later, the complete architecture is put into a netlist-based simulation
process to estimate other results. The development of the reliability assessment, fault-tolerance
architecture, and algorithms are integrated into the flow of Design for Reliability. In this flow,
the analytical model helps the early assessment of the proposed fault-tolerant techniques, and the
netlist simulations are conducted to confirm the reliability of the design.

The final goal of this dissertation is to propose a comprehensive fault-resilient architectures,
algorithms, and a design methodology for highly reliable 3D-NoC systems development. In ad-
dition to providing the fault-tolerance techniques to deal with soft errors, hard fault and TSV
defects, a working flow is also presented. The complete working design stages are also provided
to help designers understand their proposals, know how to approach the fault-tolerance challenge
and complete a robust and graceful design.
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1
Introduction

This chapter discusses the future of Integrated Circuits (ICs), where Three dimensional ICs

(3D-ICs) are widely used. It first highlights the emergence of the multi-core era and the numer-

ous challenges in interconnection. Next, these challenges are analyzed, and Through-Silicon-Via

(TSV) based Three dimensional Network-on-Chips (3D-NoCs) are considered as the solution for

future 3D-ICs. However, by inheriting the faults from ICs and TSVs, and due to the increase

in high power density and thermal removal difficulty, 3D-NoCs are predicted to have a relia-

bility crisis which needs to be properly addressed. In order to solve these problems, the design

goals show the objectives of this dissertation and the contribution section highlights the proposed

methodologies. Finally, this chapter concludes with the structure of this dissertation.
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1.1 Computing Architecture: The Road to Multi-Core Era

Moore’s law [1] and Dennard’s scaling [2] have been the driving forces for decades of Integrated

Circuit (IC) development. With the prediction of doubling the integration density every 18

months and keeping similar power density, silicon semiconductor industry has shown extraor-

dinary achievements throughout its history. Unfortunately, Dennard’s scaling, which claims that

transistors get smaller; but their power density stays constant, was questioned in the last decade

due to the domination of dynamic power and the increase in leakage current [3–5]. Consequently,

increasing the frequency is no longer the concern of most CPU manufacturers. Instead, reducing

the power consumption is the big challenge to deal with. Although Moore’s law is still long lasting,

the deep sub-micron (DSM) technology is reaching the molecular scale which is the limitation of

transistors’ sizes. Nevertheless, state-of-the-art systems have been already integrated onto a single

chip (or package) with billions of transistors. Consequently, the System-on-Chip (SoC) integra-

tion paradigm becomes more complex, requires better performance and more power efficiency, and

demands higher reliability. In order to satisfy these requirements, shifting to a new architecture

has become primordial [6, 7].

Figure 1.1: Many-core system complexity trends [8].

The improvements of computing performance and energy efficiency are given by the develop-
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ment of technology scaling. SinceDennard’s scaling was disclaimed, increasing the frequency is no

longer a suitable solution for improving the system performance. Therefore, to satisfy the hunger

for highly complex and stressful applications, the number of cores has been increased to improve

the parallelism and reduce the clock frequency while enhancing the overall performance. For ease

of understanding, Figure 1.1 presents the International Technology Roadmap for Semiconductors

(ITRS) trends in many-core systems’ complexity [8]. In comparison to systems in 2011, the cur-

rent logic and memory integration of today increases by nearly 5.5 times. By 2026, the integration

technology is predicted to be 8.3 times more than this year (2017). This complexity incrementation

is led by the increasing of the number of processing engines. As a result, the era of thousand-cores

per chip has been revealed. In the year of 2016, KiloCore [9], with the ability to execute 1.78 trillion

instruction/sec, has been recorded as the first 1,000 cores processor. Such as system has come as a

solid evidence for the predicted future of computing. As predicted in 2026, nearly 6000 cores are

expected to be embedded on a single chip.

Shifting to the thousand-cores era brings numerous challenges on both software and hardware

perspectives [10]. With its rapid development, software has been innovated with parallel pro-

cessing to keep up with multi-core systems. According to Amdahl’s Law [11], the speed up of an

algorithm on a parallel computation platform, as shown in Eq. 1.1, depends on the speed up of

each part (s) and the percentage of parallelism (p). Since the task speed up has been limited by the

stabilization of the maximum frequency, increasing the parallelism is one of the obvious solutions.

Slatency(s) =


− p
s

(1.1)

Von Neumann architecture, which was proposed a half century ago, is still a solid base for com-

puter design. However, it is also exposed to several bottleneck drawbacks. To alleviate this issue,

several multi-core approaches, such as SIMD (Single Instruction Multiple Data), MIMD (Multi-

ple Instruction Multiple Data), have offered significant improvements over the traditional meth-

ods. By parallelizing the data flow and instructions, the performance of computer architectures has

significantly improved. On the other hand, with thousands of cores per chip, the traditional inter-

connection paradigms (e.g., bus-like fabrics or point-to-point) are no longer able to keep up with

such improvement. To handle thousands of Processing Elements (PEs), the arbitration modules
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of the bus or point-to-point systems have to be overwhelmingly complex. Due to the low scalabil-

ity of these traditional paradigms, designers also struggle to expand and manage their multi-core

systems. Consequently, the need for a more scalable, lower power and higher performance inter-

connection platform has become unavoidable.

To answer these limitations, Network-on-Chip [12] (NoCs) have been widely accepted as the

most suitable solution. In such systems, a network is created from micro-routers which are con-

nected to PEs. Instead of establishing a communication channel beforehand, the data is split into

sub-sets (e.g., messages, packets and flits) and sent throughout a micro-network. By creating a

dedicated topology (e.g., mesh, torus, circle), expanding to thousands of cores with NoC is sim-

pler than traditional paradigms. In fact, several recent multi-cores systems [9, 13, 14] have used

NoCs as the backbone of their interconnection.

Figure 1.2: Wire vs. gate delay [15].

Besides the scalability and parallelism issues, wire delays has become more dominant than the

logic gate delay in DSM technologies, as shown in Fig. 1.2. From the relative delay in 250nm

technology node, the gate delay has decreased (about 5 times faster than the 32nm technology)

thanks to the scaling of the feature sizes while the global wire delay has significantly increased
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(about 30 times faster than 32nm technology) due to the increase in system complexity. As reported

in [16], wiring delay accounts for about 75% of the overall delay in the 90nm technology node.

Table 1.1 also depicts the dominance of wire latency over the transistor delay with smaller feature

sizes. As expected at 12nm feature size, a 1mm interconnect delay is ×  times slower than the

transistor one. From these reports, the integrated circuit delay optimization has to shift from logic

gate delay to wire delay in order to maintain the performance improvement requirements. As a

consequence of the increasing in wire delays, more repeaters are needed which increase the area

cost and the overall power consumption. An analysis of power dissipation in microprocessor [17]

showed that interconnection power occupied over 50% of the dynamic power. For the smaller

technology node, there is an expectation of a higher domination of wires in the overall delay and

power consumption. Consequently, and despite the tremendous obtained benefits, conventional

NoC systems cannot handle alone the high requirements of the future IC needs.

Table 1.1: Interconnects delay domination over technology scaling [18].

90 nm 45 nm 22 nm 12 nm
Transistor delay (ps) 1.6 0.8 0.4 0.2
Delay of 1mm interconnect (ps) ×  ×  ×  × 

Ratio ×  .×  .×  × 

In order solve the interconnection delay and power consumption issues, several emerging in-

terconnect paradigms such as RF/Wireless communication [19, 20], Carbone Nanotube [21, 22],

Photonic[23]and 3D IntegratedCircuits (3D-ICs) [24, 25] have been proposed. On-chipRF/Wire-

less systems replace wires by antennas to handle the communication using electromagnetic waves.

Since this technology does not require physical wires, it does not encounter the interconnect delay

issue when the system keeps scaling up; however, it may have some interference issues by putting

multiple terminals in a small area. Carbone Nanotube uses carbon-based interconnect instead of

Cu/low-k. Thanks to their outstanding electric and thermal properties, Carbon Nanotubes can out-

perform Cu interconnections, especially for long lengths[26]. On the other hand, Photonic aims

to transfer data by using photons instead of electrons which require dedicated modulators and re-

ceivers to convert data from electric to photonic domain and vise versa. In order to help reducing

the wire length, 3D-ICs use short intra-layer wires and allow multiple layers to be stacked in order

to make modules closer. Among the above paradigms, 3D-IC [24, 25] is one of the most promi-

nent solutions. There are two kinds of 3D-IC:monolithic and stacking. Monolithic 3D-ICs [27, 28]
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are manufactured by fabricating all layers in the same wafer. It is still unrealistic due to several is-

sues, and it is considered as a long-term research activity. On the other hand, 3D-IC stacking

technology is immediately available by using similar 2D wafer fabrication and establishing a layer-

to-layer connection [24] using short vertical wires, called Through-Silicon-Vias (TSVs). Thanks

to the shorter wire length of TSVs and the 3D structure, the wire delay is reduced in 3D-ICs;

thus, resulting in power consumption reduction. As shown in Fig. 1.3, by stacking two layers, the

wires of TSV-based 3D-ICs can be shorter in comparison to other approaches. Moreover, the chip

footprint is significantly smaller, and the stacking structure even allows multiple technologies to

be deployed on a single chip. This can open new and promising horizons for ICs designs where an

individual chip can be tiny while being able to handle multiple tasks: processing, memory, RFID,

mobile network, and so on.

(a) (b)

(c) (d)

Wire Bond

Off-chip
Interconnect

Through Silicon
Via

Figure 1.3: A comparison between alternative design implementations: (a) Separated chips; (b) System-
on-Chip; (c) Wire-bonding-based 3D-ICs; (d) TSV-based 3D-ICs.

By combining the 3D integration benefits with Network-on-Chips scalability and parallelism,

a new hybrid architecture, called 3D-Network-on-Chip [29] (3D-NoC), can offer one of the most

advanced interconnection solutions for future IC designs. In order to do that, the most basic idea

is to expand from a 2D mesh topology to the third dimension by adding vertical connections. As

a result, 3D-NoCs not can only solve the interconnection issues by using TSVs; but, they can also

provide better scalability for the thousand-cores era. Furthermore, 3D-NoCs not only reduce the

wire delay by using TSVs; but; they also offer a lesser number of hops in the routing path.
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Figure 1.4: 3D-NoCs as one of the future solutions for computing paradigms and the predicted reliability
issues.

1.2 Motivation: Interconnection Reliability Crisis

Despite the advantages gained from 3D-ICs, as well as 3D-NoCs, IC designs are still facing

several challenges related to reliability, thermal management, heat removal and stress issues. No-

tably, reliability is one of the major challenges to deal with. This is due to the imperfection of the

manufacturing process [30, 31] and the vulnerability of 3D-ICs due to operation voltages, high

density, and thermal removal difficulties. As depicted in Fig. 1.4, TSV-based 3D-NoCs is en-

countering significant reliability crisis which prevents it from being widely used. Therefore, this

dissertation is motivated to solve the predicted vulnerability of 3D-NoCs, being considered as the

interconnection paradigm for 3D-ICs.

Inherited from 3D-ICs problems, the TSVs’ reliability constitutes one of the most challenging

design issues in 3D-NoCs. As a matter of fact, in the manufacturing process, the TSV defect-rates

have been recently reported to be nearly 0.63% [32]. Moreover, 3D-ICs suffer from the stress issues

due to the difference between thermal expansion coefficients of the implementation materials [33].

The temperature variation between two layers has been reported to reach up to 10°C [34] which

negatively effects the Time Dependent Dielectric Breakdown and Thermal Cycling [35]. Not forget

to mention that Electromigration [36] can also be a major concern.

Besides the high defect rates of TSVs, soft errors and hard faults also occur inside the system

and corrupt the operation. In fact, and as previously mentioned, transistors are approaching the
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fundamental limits of scaling. Gate widths are nearing the molecular scale, resulting in breakdown

and wear-out in end products [37, 38]. Moreover, the anticipated fabrication geometry in 2018

scales down to nmwith a projected 0.6V supply voltage [39]. In such node scaling, a higher rate of

soft errors affects the control logics and buffers in NoC routers, leading to chip failure. In addition,

the low supply voltage enforces a very narrow noise margin, which makes the architecture more

vulnerable and sensitive to faults. As reported in [40], the soft error rate increases by about 30%

for each 100 mV decrease in the supply voltage. With the rising power density and the non-ideal

threshold and supply voltage scaling, soft errors have become increasingly common during a chip’s

lifetime [35].

Because of their high complexity, 3D-NoCs using TSVs also face difficulties regarding test-

ing, diagnosis and recovery of faults which need to be properly addressed. In addition, the error

detection and diagnosis in NoC architectures have been studied thoroughly in the scope of offline-

testing. Nevertheless, and taking into consideration the fact that soft errors and intermittent faults

are becoming a dominant failure modes in modern NoCs and general VLSI systems, a widespread

deployment of online-testing approaches has become crucial.

To solve the reliability issues, there is a substantial number of fault-tolerance works for NoCs,

which have been recently summarized in [41]. However, designing fault-tolerance techniques

is only a part of the whole process, which is Design for Reliability [42]. According to the IEEE

Guide on Reliability [43], there are five basic phases in reliability assessment: System definition,

Preliminary design, Detailed design, FAIT (Fabrication, Assembly, Integration, and Test) and Pro-

duct/support phase. Notably, reliability prediction in the three early phases is very important to

prevent the wasted time of manufacturing and designing (FAIT phase). The system still needs

to be carefully investigated before selecting the appropriate method in the specification/prelimi-

nary stage. With the system’s specification, an analytical model can be used to early estimate the

reliability of a given NoC system. After completing the design, the system’s reliability has to be

analyzed. The prototype is also studied carefully to extract the finest results. If the product can

satisfy the predefined requirements, it passes the process. Otherwise, designers need to investigate

again. Therefore, design with reliability awareness [42] is a methodology to ensure the robustness

of the system which needs to be early predicted and carefully evaluated. In fact, early reliability

analysis in the Preliminary design phase is one of the most important stages that can prevent the

8



cost of re-design and re-implementation. Even after completing the design, the system needs to

be carefully assessed not only with design constraints; but, also in terms of reliability.

Because NoC reliability assessment is still immature, it becomes one of the most crucial issues

for designers. Therefore, besides the fault-tolerance solutions, this dissertation also considers the

reliability assessment as an important issue to be addressed.

1.3 Dissertation Goals

The objective of this research is to propose a comprehensive set of faults-tolerant architectures

and algorithms for soft errors, hard faults, and TSV defects. In addition, a reliability assessment

platform is presented to help designers analyze the fault-tolerance mechanism. Hereafter, the

design goals are defined for this dissertation:

1. Reliability: The proposed 3D-NoC architecture must be able to deal with the most common

faults of 3D-ICs: soft errors, hard faults, and TSV defects.

2. Modularity: The proposed design methodology should allow the components’ update. Due

to the rapid development in computer architecture, more and more advantaged techniques

are constantly proposed. To keep up with this development, modularity is a necessary cri-

terion.

3. Scalability: The proposed fault-tolerant methods have to maintain the scalability of 3D-

NoCs. This allows the proposed methodology to be widely applied in multi-core systems.

4. Efficiency: Because the fault-tolerant mechanisms may have negative effects on the system

performance, and naturally bring additional numbers of faults, they need to ensure the effi-

ciency in terms of performance and fault resilience. The reliability assessment should offer

a low complexity method that reduces the development time.

5. Adaptivity: The system should adapt different scenarios of applications and faults. More-

over, the reaction/configuration time is also an important criterion. Because of the difficulty

in terms of repairability, the highly reliable 3D-NoC not only have to recover from faults;

but, it can also detect them and quickly respond to the situations.
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1.4 Contributions

With the above predefined goals that this work aims to satisfy, this dissertation comprises the

following contributions:

1. Complete and comprehensive soft-errors andhard-faults resilient architectures, algorithms,

and design methodologies. This thesis presents a soft error resilient method which is spec-

ified for the pipeline stage in NoCs. Because soft errors are unpredictable and unavoid-

able while occurring with a high probability (80% [44]), the recovery for them needs to be

completed to avoid catastrophic consequences. Besides several well-known techniques on

tackling data corruption, computation process is one of the most critical parts. To deal with

computation corruptions, this work presents Pipeline Computation Redundancy. With the

aid of Error Correcting Code, they complement each other to endorse the soft error resiliency

of a givenNoC system based on an online-testingmethod. Along with the previous work on

hard fault tolerance, the soft error and the TSV-defect (the second contribution) resiliency

complement the final 3D-NoC and its ability to deal with all types of faults. This compre-

hensive and complete architecture is considered as the ultimate design goal for 3D-NoCs,

which not only offers several benefits in terms of performances and power consumption;

but, it is also able to deal with the most common faults.

2. Scalable design methodology and online algorithm for TSV-cluster defects’ recovery in

highly reliable 3D-NoC systems. Defects on TSVs have significant impacts on the yield

and also reduce the reliability of post-manufacturing products. While random TSV de-

fects have been efficiently dealt with using redundancy, the cluster TSV defect is a raising

reliability issue. In order to deal with the cluster defect, this thesis proposes a technique

where the TSV clusters are shared between neighboring routers. Thanks to a light-weight

and online arbitration algorithm, the system can maintain the operation under a significant

amount of cluster defects. Several optimizations and arbitrations are added to improve the

overall reliability.

3. A platform for early reliability assessment for NoC designs. To help designers understand

the different trade-offs between the performance degradation, area cost, power consump-

10



tion, maximum frequency and fault-tolerance capacity, this dissertation build a platform

for early reliability prediction using a fast and light-weight analytical model. By modeling

the network with the fault-tolerant techniques to states and exploring the reactions of the

system to failure, this proposed platform provides a quantitative solution that depicts the

reliability of the system. Hence, given a fault-tolerant technique and a NoC architecture,

designers can early assess the reliability without implementing and performing real tests.

By bringing the aforementioned contributions together, this dissertation offers a whole process

consisting of specification with prediction, system-level and modular design, in addition to the

layout stage.

1.5 Dissertation Structure

In the remaining parts of this thesis, the contents are described and organized as shown in

Fig 1.5. The details of the remaining chapters are as follows:

• In Chapter 2, this thesis first overviews 3D integration and Network-on-Chip interconnect

paradigms. It also highlights the reliability issues in 3D-NoC systems and provides an

overview of the proposed solution.

• Chapter 3 presents some of the important related works that dealt with fault-tolerance in

NoC systems. Moreover, it also provides a survey of TSV fault-tolerance. Later, a summary

of reliability prediction is presented.

• Chapter 4 is dedicated to the soft error and hard fault tolerant NoC architecture where it

addresses both types of faults. A detection, diagnosis, and recovery mechanism is proposed

to ensure the online fault-tolerance capacity of the network. Evaluations are performed

and analyzed to show the impacts on the system performance and reliability under several

fault-rates.

• Chapter 5 introduces the proposed TSV fault-tolerant mechanism. It firstly starts by pre-

senting a brief overview of the proposed structure. Second, it introduces the sharing algo-

rithm and several performance and reliability enhancement techniques. Finally, it evaluates

11



CHAPTER1: Introduction

Motivations, Goals, and 
Contributions

CHAPTER2: 3D Integration 
and Network-on-ChipCHAPTER3: Related Works

Fault Tolerance

Architecture
Approach

Software
Approach

Integration
Approach

Early 
Assessment

Analytical
Models

Simulation
Methods

3D Integration
Technology

3D Circuit
Architecture

Reliability 
Issues

3D-NoCs and 
Design for 
Reliability

Multi-Core Era

Interconnection Crises

CHAPTER4: Soft Error and Hard Fault 
Tolerance Architectures and Algorithms

Soft Error Resilience

Hard Fault Tolerance

Detection, Diagnosis and Recovery

CHAPTER5: Scalable TSV-cluster defect 
tolerant architectures and algorithms

TSV-cluster defect tolerance

TSV managing algorithm

Layout Consideration

CHAPTER6: Reliability Assessment for 
NoC systems

Analytical Assessment

Monte-Carlo Simulation

CHAPTER7: TSV-based 3D-NoC system
design

Dissertation Approach

Design with TSV

CHAP8: Conclusion

Design of  3D-NoC systems

Figure 1.5: Dissertation structure.

12



the system to analyze the impact on performance and reliability when adopting the proposed

TSV fault-tolerant mechanism.

• The dissertation dedicates Chapter 6 to present the proposed reliability assessment platform

in a fair amount of details. The definitions and the backbone of this assessment are firstly

provided. Later, reliability is addressed by using specific strategies and merging techniques.

For the accuracy evaluation, it firstly presents the Monte-Carlo Mean Time To Failure

simulation and compares the results with the proposed platform. Finally, assessment results

for several network sizes are provided and analyzed.

• Chapter 7 depicts the dissertation approach regarding the design for TSV-based 3D-NoC

systems. Firstly, the dissertation approach with Design for Reliability is presented. Finally,

the discussion of design with TSV and 3D-NoC systems is described.

• Finally, in Chapter 8, this dissertation ends with the conclusion. It also discusses the po-

tential optimization that can be further undertaken.
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2
3D Integration and Network-on-Chip

T
hree dimensional integration is an emerging technology offering lower power

consumption, reduced wire delay and allowing heterogeneous integration. Among

several technologies, Through-Silicon-Via (TSV) is rising as a prominent intercon-

nection method. By creating a via, then thinning the dies and stacking them together, TSVs are

created for handling the inter-die connections. Although the 3D-integration has brought sig-

nificant benefits, it is still immature due to various reliability issues. The defect-rates of TSVs

are still extremely high and they require more advanced development on quality improvement

and fault-tolerance. This chapter presents the fundamentals of 3D integration and addresses the

critical reliability challenges. Because 3D-Network-on-Chips (3D-NoCs) are considered as the

backbone of future 3D Integrated Circuits (3D-ICs), this chapter also provides a brief description

of 3D-NoCs and specifies their main design challenges. An overview of existing fault-tolerant
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mechanisms for 3D-ICs and 3D-NoCs is also described. Furthermore, the reliability assessment

demands are presented and analyzed.

2.1 3D Integration Technology

2.1.1 Overview

In the early years of computing systems, the birth and scale-down of the transistor have intro-

duced a new different focus: the gate. Scientists and engineers, in the last five decades, have focused

on how to reduce the size of transistors while improving their performance. As envisioned by Gor-

don Moore, transistors are becoming smaller [1] and will reach the modular scale soon. However,

the focus has been shifted to a retro obstacle: the wire. While the gate delay and performance

are improved, wire’s delay has been increased and has become the major challenging part inside

ICs. Because of the domination of wire delay, scientists and engineers need a better method of

integration. The answer, in fact, has been imagined for decades, is 3D (or vertical) integration [45].

Because the System-on-Chip (SoC) development has shifted from off-chip to on-chip inter-

connections, and that allowed all the system’s components to be integrated on a single package,

3D-ICs are widely considered as the promising solution for future SoCs. By increasing the system

integration at a lower cost, reducing the footprint, improving the performance and reusing the

existing technologies, 3D integration is a solid step forward for manufacturing integrated circuits.

Recently, 3D-ICs have been introduced in several applications such as DRAM stacking [32],

camera sensors [46–48], SSD (Solid State Drive) [49], processors [50] and many others.

In the most simple way, 3D integration is an extension of conventional 2D integration. By ver-

tically integrating, designers expect to have smaller packages, shorter wires that reduce the power

consumption, and better overall performances. Figure 2.1 shows how the 3D structure can reduce

the footprint and wire length. With the same area A, the die width of 2D-IC is
√

A while the

two layers and four layers 3D-ICs die widths are
√

A/ (29.29% of reduction)and
√

A/ (50% of

reduction), respectively. Thanks to the diminution of the die width, the wire length is also reduced.

As shown in Fig. 2.1, by converting to two layers, the wire length in the same planar is reduced,

and there is an additional length of the vertical wire, which is significantly small (layer’s thickness).

On the other hand, by following Moore’s law, transistors are reaching the modular scale. To
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Figure 2.1: Footprint and wire length reduction in 3D-stacked structures.

keep adding more gates in the same area, reducing the transistor’s size is no longer the correct

answer. To solve these limitations, or even advance to more than Moore, going vertical is a better

solution. As earlier mentioned, the 3D integration is not a brand new idea; but, it is recently

considered thanks to its several benefits. The first benefit of going vertical is having shorter wires,

as analyzed before. Second, the footprint can be smaller. Third, some 3D integration technologies

allow heterogeneous stacking, where each die can be fabricated in different technologies and can

be stacked together later. This also helps to reduce the development time.

2.1.2 3D Integration Methodologies

Because 3D integration has been early considered and recently researched, there are several

methods for vertical integration. The approach can beWire bonding [51], Solder balls [52],Through-

Silicon-Via [24] or Wireless stacking [19, 53, 54]. Figure 2.2 shows the most common methods for

3D-ICs fabrication. Wire bonding uses dedicated wires to establish the connection between layers.

Solder balls is an alternative method for wire bonding, where layers are connected by solder balls to

establish the intra-layer connections. For both wire bonding and solder-balls, the major objective

is the global interconnection or the I/O of the dies. Although they improve the performance and

power consumption in comparison to off-chip interconnections, the long wire length problem is

still not completely solved. The Through-Silicon-Via and Wireless stacking aim to solve this issue.

By establishing vias throughout the layer, creating micro-bumps as contact points, and connect

layers together, TSVs can act as a the global interconnection with large TSV sizes (2-10µm) or

even local ones with smaller sizes (less than 2µm). Wireless stacking, which can use capacitive

or inductive couplings, does not require any vias for the communication. It only demands Vdd

and GND supplies. A single communication can be extremely fast; however, the interference

between terminals is one of major obstacles to allow high density integration. The wireless method
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Figure 2.2: 3D integration methodologies: (a) Wire bonding; (b) Solder balls; (c) Through Silicon Vias;
(d) Wireless stacking.

Table 2.1: 3D and 2D technologies comparison.

Technology 2D SoC Wire bonding Solder balls TSVs Wireless stacking
Integration Capacity low high high very high very high
Bandwidth high high medium very high very low
Interconnect density medium low low very high medium
Yield medium medium medium considerable N/A
Cost very low high low very high N/A
Power Consumption medium low low very low N/A

is prominent when eliminating the use of TSVs; however, it is still immature for wide usage.

Table 2.1 shows a brief comparison between 2D and 3D technologies.

Scientists are also doing a lot of research about 3D VLSI [55], where no TSVs are required for

global or local interconnection. In fact, the transistor is fabricated not only in a planar fashion;

but, also vertically. Instead of TSVs, Monolithic Inter-Tier Vias (MIVs) are used to connect lay-

ers. However, the CAD tools’ support and fabrication difficulties still limit the feasibility of this

method. Despite of the above challenges, Through-Silicon-Vias is predicted to play a major part of

3D integration in the next decades.

TSV-based 3D Integration

Figure 2.3 shows the recent implementation of TSVs. The available technology is 3D WLP

(Wafer Level Packaging) bond-pad where the TSV size is larger than 10 µm and it serves as an I/O
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Figure 2.3: TSV fabrication technology [56].

interconnection in some systems [56]. TSVs serve as global interconnects and they are designed

for 3D SIC (3D Stack IC) where their average size is between 2 µm and 10 µm. These are emerging

technologies and have been researched in the past few years. The smaller size (less than 2 µm) is

aimed for local interconnects and is still risky. For each TSV technology, the TSV aspect ratio

shows the ratio between the depth to the diameter. For the lower ratios, they require thinner

wafers/dies in order to be connected.

By stacking multiple layers and connecting them via TSVs, the wire lengths can be significantly

shortened. As shown in Figure 2.3, the depth of TSVs are nearly or smaller than 20 times the

diameter, which is extremely shorter than normal wires. Moreover, the 3D structure also makes

blocks in the system closer, which also creates shorter wires. As a result, the power consumption

is reduced because of the lesser buffers in wires.

TSV’s material can be Copper Tungsten (W) [57, 58], Copper (Cu) [59, 60], or Poly-Silicon (Poly-

Si) [61]. Notably, the TSVs’ materials have different Coefficient of Thermal Expansion (CTE)

when compared with the substrate, which is considered as the most important issue of TSV-based

3D-ICs under operating conditions. Specifically, Copper TSVs have lower resistivity and film

stress; but, with a higher CTE difference than Tungsten [58]. On the other hand, Poly-Si is the

most stable material among all of them; but, it suffers from higher resistance [62]. Figure 2.4
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Figure 2.4: Process flow of a 3D-Cu TSV technology: Die-to-wafer stacking is performed with simulta-
neous Cu-Cu thermo-compression to create mechanical and electrical connections simultaneously [56].

shows the fabrication process for Cu-based TSV.

2.1.3 Challenges of 3D-integration

Because TSV-based 3D-IC technology is still new and immature, it is challenged by several

obstacles. They need to be overcome to be widely adopted. Below is a summary of the key chal-

lenges:

• Manufacturing Cost. TSV fabrication requires extra steps: via etching, thinning, micro-

bump forming, bonding and testing. In addition, the low yield of TSV-based systems (see

Table 2.2) also increases the manufacturing cost.

• Design,Tool andFlow. Because 2D-integration is different in comparison to 3D-integration,

design tools and flows need to be modified to support TSVs.

• Reliability andTesting. Due to the high defect-rate of TSVs, the reliability is an important

challenge. Moreover, by stacking multiple dies together, a failed die also leads to the total

system failure.

• Thermal hotspots, Stress and Power Dissipation. By stacking multiple layers, thermal re-

moval becomes extremely difficult. Therefore, thermal hotspots are expected to appear in

3D-ICs. Moreover, due to the difference in thermal expansion coefficients of materials and

hotspots, 3D-stacked ICs encounter the mechanical stress.
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Because TSVs and 3D-ICs are presenting a major shift in the system architecture, the risk of

early fabrication is obvious. Therefore, recent researches have more and more focused on TSV-

based structure, and are expecting to be widely used in the near future. In the scope of this disser-

tation, the reliability of TSV-based 3D-ICs is discussed.

2.1.4 Dissertation focus

As previously discussed, several technologies have been proposed to adopt the 3D integration

technology. In fact, there are existing products using such a technology [32, 46–50]. By following

the current trends of vertical integration, this dissertation aims to focus on the TSV technology,

which is predicted to be maturely available soon and can significantly benefit the existing tech-

niques. Although TSV-based integration is the focus of this dissertation, the proposed architec-

tures, algorithms and techniques can be applied for future technologies with few modifications and

considerations.

Section 2.1.3 discussed the challenges of 3D integration, which mainly focuses on TSV-based

3D-ICs. Among these challenges, the reliability and testing are one of the most critical issues as

they will decide the popularity of 3D integration in the near future. In fact, reliability is considered

as the most important criteria for critical applications: space, medical, autonomous, and so on.

Since the future of 3D integration is undeniable, considering highly reliable architectures and

algorithms is definitely demanded. Meanwhile, due to the vulnerability of 3D-ICs, the reliability

crisis for interconnection is foreseen.

2.2 Interconnection Reliability Crisis

Figure 2.6 shows a taxonomy of the reliability issues in 3D-ICs. Here, they are classified into

three branches: soft errors, hard faults and TSV defects. Examples of hard faults and soft errors

are illustrated in Fig. 2.5. Figure 2.5 (a) shows an open wire defect where there is a crack inside

the wire. Consequently, the resistance of wires is increased. Instead of transmitting the signal ‘1’

(the voltage value is Vdd), the output of the wire does not pass the threshold voltage due to the

high wire resistance. As a result, at the sampling time, the output value is determined as ‘0’ instead

of ‘1’. Figure 2.5(b) shows a single-event transient where a possible particle effects the output of

an AND gate. At the output port, a glitch occurs and is sampled as logic value ‘1’ instead of the
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(b)(a)

Single Event Transient

Figure 2.5: Illustration of faults: (a) Open wire defect (hard fault); (b) Single event transient (soft error).

correct value ‘0’; thus, resulting in an error. In later clock cycles, the transient effect can disappear

and the gate operates back normally.

Hard faults, including both permanent and intermittent faults, can occur during the manufac-

turing stage or under specific operating circumstances. Intermittent faults periodically occur during

operation and can disappear after a certain time. For instance, the crack in Fig. 2.5 (a) creates tim-

ing violations at a high temperature; however, it still allows normal operation at cooler conditions.

Because these faults do not permanently damage a given component, it can pass through several

testing stages. Nevertheless,they can still cause operation failures. Although intermittent faults

can disappear after a specific period of time, their inconsistency can be treated as permanent faults

to avoid complex situations. For both permanent and intermittent faults, the most natural solution

is using redundant components [63, 64].

On the other hand, soft errors arise from energetic particles, such as alpha particles and neutrons

from cosmic rays, generating electron-hole pairs as they pass through a device. A sufficient amount

of accumulated charge may invert the state of a logic device such as a latch, gate or SRAM cell;

thereby, introducing a logic fault into the NoC’s operation. Soft errors do not permanently defect

the gate and only occur over a short period of time. Because of their special characteristics, they are

unpredictable and unavoidable. Unlike permanent and intermittent faults, transient faults cannot

be fixed by replacing the affected components. Instead, they can be recovered by repeating the

erroneous operation. A transient failure inside the data path can also be fixed by using code-based

techniques (e.g., Error Correction Code (ECC) [65]). Statistically, transient faults are the most

common kind of faults accounting for 80% of failures, as reported in [44]. Therefore, without
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Table 2.2: TSV Defect Rate Summary.

Work TSV Pitch Defect Rate TSVNumber Yield w/o Spare
IBM’05 [75] 0.4µm 13.9E-6 1k-10k 95% 98%
IMEC’06 [76] 10µm 40.0E-6 10k 67%
HRI’07 [77] - 9.75E-6 100k 68%
HRI’09 [78] - 7.95E-6 100k ≥90%
SAMSUNG’09 [32] - 0.63% 300 15%

an efficient protection mechanism, these errors can compromise the system’s functionality and

reliability.

Table 2.2 summarizes the defect-rates of TSV-fabrication [66]. The TSV defect-rate is con-

sidered extremely high which negatively affects the final yield. In [32], 0.63% of the TSVs is

reportedly defected and the yield without spare is only 15%. Besides the high defect rates dur-

ing the manufacturing stage, TSVs under operation also face several challenges related to stress

and thermal issues [33, 67–71]. As a result, TSVs are one of the most vulnerable components in

3D-ICs.

Defects in TSVs can be classified into three types: open (or void), stuck-at and bridge (shorted

between two or more TSVs). Figure 2.7 show cross-sectional chip photographs of the void and

pinch-off defects (note that pinch-off is also classified as an open defect due to the high resistance

of the TSV). If the defect of a TSV is partial, it may only lead to timing issues when the transmitted

signal arrives late.

In [30, 72, 73], the authors modeled the TSV and its defects as RC models where additional

open or short resistors are added. The RC models of its failure are depicted in Fig. 2.8. A TSV,

which handles the connection between the top layer and the bottom layer, is modeled with its

resistance and capacitance. When the open defect occurs (depicted in Fig. 2.8 (b) by the white

area inside the TSV), an additional resistance Ropen is put in the RC model [73, 74]. Similarly,

Rshort and Rbridge are added to represent the short-to-substrate and bridge defect, as depicted in

Figs. 2.8 (c) and (d), respectively. Depending on the value or the additional resistance, the TSV

function is corrupted or only timing violations occur. For example, in [73], the authors classified

three levels of Rshort: Rshort > KΩ - good; KΩ > Rshort > KΩ - repairable (creating timing

issues); Rshort < KΩ - total defect.
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Figure 2.7: TSV defects: (a) Void; (b) Pinch-off [79].

The TSV failure distribution is still under investigation. In general, there are two main assump-

tions regarding failures: Random and Clustering distributions [30, 80, 81]. Random TSV defects

are efficiently dealt by adding redundancy and recovery methods; however, clustering defects are

considered as a big challenge. Moreover, TSV misalignment [82] also may occur and it is classi-

fied as a cluster defect. Because of the stress and thermal issues, TSVs may also be defected after

manufacturing. In [35], the authors presented several Mean Time To Failure equations for 3D-

ICs caused by Time Dependent Dielectric Breakdown, Thermal Cycling and Electro-migration where

the temperature values play an important role. Because of the cluster effect on hot-spot areas in

3D-ICs [56], the obvious result is the cluster TSV defect.

2.3 3D Circuit Architecture

3D integration is proposed to solve the interconnection issues for deep sub-micron era. As a

result, there are more and more gates inside a single chip. The system can be extremely complex

and, consequently, 3D-ICs may require different organizations and infrastructures, or even soft-

ware architectures. This section highlights the possible solutions, where 3D-NoCs are considered

as the most promising one.

The most natural method of shifting to 3D integration is using vertical connections as normal

wires. There are two cases in this method: (1) Splitting a module into multiple planes; (2) Chang-

ing from off-chip interconnection to vertical connection. Because the two cases do not require

a complex design, they are simple to implement. However, since the system is becoming more

and more complex than before, and it is expected to have multiple cores/PEs inside a single chip,

the 3D architecture is investigated more carefully. Here, 3D architectures are classified into three
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Figure 2.8: TSV RC modeling: (a) Healthy TSV; (b) Open defect TSV; (c) Short-to-substrate TSV; (d)
Bridge TSVs.

main categories:

1. 3D Microprocessor and Memories.

2. 3D Field Programmable Gate Array (3D-FPGA).

3. 3D Network-on-Chips (3D-NoCs).

Since the 3D-FPGA is a development platform and 3D-NoC is an interconnection paradigm,

there are overlapped areas between them. In fact, 3D microprocessor, memories and 3D-NoCs

can be implemented into 3D-FPGAs without the need for significant modifications (e.g., they

may only require a proper tool). Microprocessors can be replicated into multi-core systems, which

require NoCs as the interconnection infrastructure instead of bus or point-to-point. With the help

of 3D-NoCs, microprocessors are put in a single plane and the restrictions on their designs can be

simplified. The timing, communication and reliability analyses are shifted then to NoCs.
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Figure 2.9: FPGA design: (a) 2D-FPGA structure; (b) 3D-FPGA structure; (c) 2D Switch Box (SB); (d)
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2.3.1 3D FPGA

Because this dissertation focuses on the 3D Integration, which mostly considers VLSI imple-

mentation, 3D-FPGAs [83–86] are discussed here as the architecture, not as the development plat-

form. Figure 2.9 shows the brief structure of 3D-FPGA with its dedicated Switch Box (SB) [87].

The architecture of 3D-FPGAs is similar to 2D-FPGAs inside the same plane. To allow vertical

signals traversal, there are some 3D SBs inside the 3D-FPGAs. These 3D-SBs handle the vertical

connection by selecting theZ direction. Depending on the fabrication technology, vertical connec-

tions can be implemented differently. Recently, the common method is grouping them together

and using TSVs as the inter-planar connections. Because TSVs utilize large area, the number of

3D-SBs is limited. Two main FPGA vendors (Xilinx and Altera) have recently launched 3D-ICs

FPGA products[86, 88] which are important stepping stones for the 3D-FPGA architecture.

As a development platform, a 3D-FPGA can be programmed as a specific circuit. Because the

3D SBs allow the vertical connection, the development flow needs to be modified to adapt to the

new architecture.

2.3.2 3D Microprocessors and Memories

3D Microprocessors have been extensively investigated in several works [50, 89, 90]. In these

studies, TSVs, wire bonding or wireless stacking are used to handle the communication between

layers. Authors in [89] rearranged the floor-planning process for 3D architecture instead of 2D.
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Table 2.3: Performance and power enhancement of 3D over 2D architectures [87, 91].

# of input bits Kogge-Stone Adder Brent-Kung Adder
16-bits 32-bits

Delay Power Delay Delay
2 planes 22.23% 8% 9.6% 13.3%
3 planes 23.60% 15% 20% 18.1%
4 planes 32.70% 22% 20% 21.7%

Sean et al. [50] use the inductive-coupling based link (f = MHz, bits) instead of TSVs for the

inter-layer communications. The block diagram of this architecture is shown in Figure 2.10(a). The

photograph of the implementation is depicted in Figure 2.10(b). Table 2.3 shows the comparison

between the processor components’ implementations in 2D and 3D architecture [87, 91]. Here,

the 3D architecture offers better delay and power consumption because of shorter wire length.

Memories can also be implemented into 3D architectures [32, 92, 93]. Figure 2.10(c) shows the

block diagram of an 8Gb DDR3 memory which is implemented using TSVs. The master chip is

put on the bottom layer and the DRAM cores are put on the top one. The communication between

the master and the slave are handled by TSVs. In comparison to traditional 2D memories, 3D

ones have smaller footprint and shorter wire length between the master core and the slaves.

2.3.3 3D-Network-on-Chips

With the continuous trend of IC development, hundreds then thousands of cores are expected

to be integrated into a single chip [8]. Because the traditional on-chip communication paradigms

(e.g., bus, point-to-point) do not provide better scalability, future ICs need alternative intercon-

nect fabrics. Recently, several multi-cores systems [9, 13, 14] have used packet-switched NoCs as

the backbone of their communication. In NoC architectures, PEs are connected to the network

through Network Interfaces (NIs) and the communications are performed in parallel using specific

protocols.

For 3D-ICs, NoCs can evolve into 3D-NoCs [94, 95, 95, 96] where a 3D mesh topology can

be used. By adding the vertical connections, 3D-NoCs can support the inter-die communication

without overwhelmingly complicating the infrastructure. However, 3D-NoCs are also exposed to

several challenges such as synchronization and reliability. As the main theme of this dissertation,

the reliability issue is focused on. Since solutions to solve the reliability in 2D-NoCs have been
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Figure 2.10: 3D architectures: (a) 3D Microprocessors and memories systems [50]; (b) DDR3 memory
block diagram [32].

extensively researched in the last decade, some of them can be adopted in 3D-NoCs. This section

shows the architecture of 3D-NoCs, the reliability challenges and the possible solutions.

As depicted in Fig. 2.11, a TSV works as an inter-layer wire in 3D-NoCs, as well as in 3D-ICs.

By creating vias, thinning the wafer and performing a thermo-compression [56], the TSVs are

established and the two wafers can connect through them. TSVs are usually fabricated regularly

into a group or a cluster, or irregularly in random positions. For 3D-NoCs, the most typical

method is putting TSVs near their corresponding routers.

A NoC system, as shown in Fig. 2.12, consists of three main elements: (1) Routers: they are

connected between each other via point-to-point channels. (2) Network Interfaces (NIs): consti-

tute the interface between the router and the attached PE. (3) Processing Elements (PEs): execute

the program and they are connected to the NoC via NIs.

A router includes three main parts: input ports, routing units, and a crossbar. Data is divided

into a set of packets where each packet consists of several flits which are obtained by the flitizing

process. A flit travels from source to destination through the network with the help of routers.
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Figure 2.11: Structure of a typical 3D Network-on-Chip system.

Inside a router, an incoming flit is stored in an input port, routed by routing units (virtual channel,

switch allocation, and intra-router arbitration) and physically forwarded to the next node by a

crossbar channel. The flit is transmitted via an inter-router channel to the next router or to an NI.

The routing path of a packet is decided by the routing unit. After completely transmitting a packet,

the routing configurations of the packet is released for future packets.PACKET TRAVELING PATH
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Figure 2.12: Network-on-Chip simplified block diagram.

2.4 3D-NoCs: Design for Reliability

As discussed in Section 1.2, Design for Reliability is the method to ensure a highly reliable

design [42, 97]. For 3D-ICs and 3D-NoCs, designers also need a similar approach: from Specifi-

cation/Preliminary Design to Design and FAIT [43]. Figure 2.13 depicts a brief overview of Design
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Figure 2.13: Design for Reliability.

for Reliability. In the Specification stage, designers select the fault-tolerant (FT) methods and their

configurations (e.g., number of redundancies). In the second stage, designers should do early as-

sessment to estimate the reliability of the system with the aid of the FT methods. After finalizing

the specifications, the system is designed and forwarded to the next stage: Detailed Design. By

having a completed design (e.g., Hardware Description Level code, layout), designers can first

verify the correctness of the FT methods. Here, they can manually inject faults and check the

operation accuracy. Later, they can perform post-design assessment or reliability simulations. If

the system matches the reliability requirements, it is forwarded to the FAIT stage. Otherwise, re-

design is required to enhance the reliability. Similarly to the Detail Design, FAIT also checks the

reliability and decides whether to finish the development or require a re-design process. Among

the above processes, FAIT is the most time-consuming one. Therefore, the reliability of the system

needs to be carefully assessed before this step. This is because designing a complex system requires

numerous hours of development where the redesign time should be eliminated or minimized as

much as possible. In summary, in Design for Reliability, the early assessment in Preliminary roles

an important part to reduce the risk of re-design.

In this dissertation, the main focuses are fault-resilient architectures and algorithms for 3D-ICs

where 3D-NoCs are the main target. Therefore, the FAIT stage is not addressed. Here, the thesis
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mainly works with FT methods and the reliability assessment. The remaining parts of this section

provides an overview of FT methods and reliability assessment for 3D-NoCs. Later, Chapter 3

describes the already proposed approaches in more details.

2.4.1 Fault-Tolerance for 3D NoCs

Similarly to the fault-type classification, fault-tolerance for 3D-NoCs is classified into three

types: soft errors, hard faults and TSV defects. This classification is necessary as these types have

different characteristics, probabilities and impacts on the system.

Hard fault handling schemes are based on two main approaches: (a) FT routing algorithms,

which enable packets to avoid faulty nodes in the network [63, 94]; (b) architecture-basedmethods,

which use hardware (components) redundancy and/or reconfiguration to recover from faults [63,

64, 98]. Soft error recovery is also performed by two main schemes: (a) data corruption handling

using Error Correction Code (ECC) based methods [65, 99, 100]; (b) control logic handling using

temporal redundancy based methods [101–103].

Existing works onTSV-defect presented so far have dealt with reliability in different approaches:

(a) improving the manufacturing process to enhance the reliability of TSVs [104]; (b) accounting

the potential defects in the design stage [33]; (c) correcting the defected TSVs by using supporting

circuits [73, 105], redundancy [74, 80, 82], or ECC [65]; (d) using an alternative channel to avoid

the defected TSV channel (e.g., using FT routing [94] in 3D-NoCs).

Although these works have impressively enhanced the reliability of TSV-based systems, there

is still an existing issue in the fault distribution. Most of the first conducted works addressed the

random distributions [82, 106]; however, the cluster defect distributions [30, 80, 81] are recently

considered as the most realistic one. In order to deal with the cluster TSV defect, most works aim

to select a suitable grouping configuration [81] to distribute TSVs on different positions [30] or to

enhance the redundancy correction rate [80]. Although these methods can improve the reliability

of the system, adding extra redundancy and complex arbitration result in penalties in terms of area

cost, wire latency and power consumption. Moreover, if the number of defective TSVs is larger

than the number of assigned redundant ones, the vertical connection is corrupted. Therefore, we

observe that a better management solution can help to deal with this issue, especially for 3D-NoCs,

where low utilization rate of the TSVs has been reported [107, 108].
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2.4.2 Reliability Assessment

For the early reliability assessment, there are three basic methods: Physical-analysis, System-level

simulation and Analytical-model. The Physical-analysis method [109–111] focuses on the device re-

liability under specific conditions. The whole system’s reliability can be synthesized from its all

elements. A major drawback of physical-analysis is the complexity of evaluation for large systems

which may involve a huge amount of analyses. System-level simulation [41, 43, 65, 112, 113] re-

quires having the fully implemented system characteristics (inDetail Design stage) which is difficult

to be obtained in the system definition or the preliminary design phase. On the other hand, the

Analytical model is popular in the computer network’s reliability assessment [114, 115]; but, it is

not widely applied in integrated systems. Specifically, NoCs reliability assessment is still imma-

ture. Recently, works in [35] and [116] have provided good analyses regarding TSV failure and a

baseline NoC system. Because of the continuous increase in terms of complexity, NoCs assessment

using physical-analysis and system-level simulations is no longer suitable enough, and the need for

a more efficient analytical method has become primordial.

2.5 Conclusion

This section has introduced the background of the conducted research. It also classified the

issues of future 3D-ICs and the motivation underlying this dissertation. In summary, because of

the vulnerability of 3D-ICs, their reliability need to be enhanced. First, fault-tolerant methods are

needed to help the system dealing with the possible failures. The fault-tolerantmethods should well

cover the most common issues: hard faults, soft errors and TSV defects. Second, these methods

need to be properly assessed to help designers understand the enhancement in terms of reliability.

In the next section, some of the important related works to this research are summarized and

discussed.
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3
Related Works

I
n the last decade, numerous of works have addressed the related issues to fault-

tolerance in NoC architectures. Recently, 3D-NoCs also bring several fault char-

acteristics that need to be tolerated. This chapter reviews some of the well-known

solutions presented to solve the potential reliability issues. The existing techniques are classified in

three main categories: architecture, software, and integration. As a part of Design for Reliability,

this chapter also reviews the reliability assessment for IC design and focuses on NoC systems.

3.1 Fault-Tolerance Approach

Table 3.1 shows the taxonomy of fault tolerance in 3D-NoCs. Here, the FT methods are

classified into three approaches:

• Architecture: use built-in circuits to recover the faults (e.g. adding redundancy or self-
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configuring the system to deal with the presence of faults). The failed part is abandoned

and possibly replaced by a redundant component or its task is handled by other parts.

• Software: use alternative revisions of the system’s program to handle the possible failure.

This method is normally applied to the computing-related block, where the FT methods

can refine the output to help the system deal with the faults. Re-executing the operation

is also considered as a viable method. For instance, fault tolerant routings can aware the

occurrences of faults and avoid them in the selection process.

• Integration: this method focuses on the physical layer, where the defect is repaired or con-

sidered in the design process.

Table 3.1: Taxonomy of different error recovery protocols and architectures in NoCs. Classification: ”A”
for architecture, ”S” for software and ”I” for integration.

Fault Type Position/Type Fault TolerantMethod Approach

Soft Errors

Data Path Automatic Re-transmission Request [99] S
Error Detecting/Correcting Code [65, 100] S

Control Logic
Logic/Latch Hardening [41, 101] A
Pipeline Redundancy [103] S
Monitoring and Correcting model [102, 117, 118] S

Hard Faults
Routing Technique

Spare wire [119, 120] A
Split transmission [121] A
Fault-Tolerant routing algorithm [63, 94] S

Architecture-based Hardware Redundancy [64] A
Technique Reconfiguration architectures [63] A

TSV Defects
Redundancy

Shifting [32, 81] A,I
Crossbar [82] A,I
Network [80] A,S,I

Management Design awareness [33, 73] I
Randomly distributed redundancy [30] A,I

3.1.1 Architecture approach

Figure 3.1 depicts the two basicmethods in the architecture approach. Besides the original mod-

ule, the redundancy technique adds a replica for recovery. On the other hand, self-configuration

does not utilize extra area cost and use the remained modules to handle the task of the failed

module. As shown in Figure 3.1(c), the task of Module 1 is handled by Module 3 and 5.
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Figure 3.1: Hard fault tolerance using architectural approaches: (a) Redundancy with checking; (b) Redun-
dancy with majority voting; (c) Self-configuration.

Hard Fault Tolerance

The architecture approach is efficient for permanent faults: hard faults or TSV defects. The

defected part is replaced by a healthy part to keep the system run correctly. For NoCs, adding

redundancy [64] or self-configuration [63] to the system in order to work around the defect can

be found as two common solutions. In previous works conducted at our laboratory1, several hard

fault-tolerant methods were developed to deal with faults on input buffer [98], crossbar [98], and

inter-router link [94, 122, 123]. This dissertation also adopts these techniques to enhance the

reliability of the proposed system. More details about these techniques are presented in Section 4.2.

In the routing approach of hard fault tolerance, the failed parts can be isolated and the con-

nections are maintained by using spare-wires [119, 120], split transmission [121] or fault-tolerant

routing algorithms [63, 94]. Figure 3.2 shows three examples of spare-wires, split routing, and

fault-tolerant routing. When a wire is failed, the spare-wire technique uses a redundant wire as

the replacement to maintain the connection. On the other hand, the fault-tolerant routing tech-

nique uses an alternative transmitting path to deal with the fault. Split routing, or serialization,

uses a part of the healthy links for maintaining the connection. When wires are failed, the system

can use serialization and deserialization which require multiple clock cycles to transmit a single

flit. Figure 3.2(c) shows the 50% serialization mode, where only half of the wires are used and the

system needs two clock cycles for transmitting a flit. Note that the fault-tolerant routing can be

considered as a software approach.

1Adaptive Systems Laboratory, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan.
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Figure 3.2: Hard fault tolerance using routing approaches: (a) Spare wire; (b) Fault-tolerant routing; (c)
Split routing.

Soft Error Resilience

On the other hand, soft error resilience can use Triple Modular Redundancy (TMR) (see

Fig. 3.1(b)) which can deal with both soft errors and hard faults at the same time. By triplicating

the original module, the system gets three results at the same time [41]. The three results are sent

to a Majority Voting module to decide the accurate result. Although this technique suffers from

high area overhead and power consumption (about 300%), it is easy to implement and effective for

both soft errors and hard faults. This method is feasible for TSV defects; however, due to the high

area overhead, it is rarely considered.

TSV Defect Recovery

For TSV defect recovery, the most common method is adding redundant TSVs to correct the

defected ones [74, 80, 82]. The major concern in this method is to efficiently route from a de-

fected TSV to a spare one. There are four basic solutions: (a) signal switching [32], (b) single

shifting [106], (c) crossbar [82] and (d) Network TSV routing [80]. Figure 3.3 shows examples

of shifting techniques, Double TSV and Network TSV. The redundancy technique, which is the

shifting, switching and crossbar method, use redundant TSV for recovery. When a TSV defects,

its function is handled by a redundant TSV. Network TSV routing [80] is one of the most ad-

vanced techniques in redundancy mapping. A light-weight network is created for routing the

terminal having failed TSVs to a spare/redundant ones. By creating a network, it can utilize the

redundancies better than other approaches. Because of the cluster defect, the TSVs located nearby
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Figure 3.3: TSV Fault Tolerance: (a) Redundancy Technique; (b) Double TSV; (c) Network TSV.

the defected one have a high probability of failure. Therefore, grouping them together makes a

group with many defected TSVs. This leads to increase the redundancy to deal with this kind of

defects. In [30], the authors propose a mapping method to reduce the impact of cluster defects.

TSVs in the same group are mapped to a random position with the help of an optimization process.

On the other hand, Zhao et. al [81] analyze the grouping method to achieve the best recovery. The

work presented in [80] introduces an innovated method for TSV mapping by creating a network,

and implements an algorithm for re-routing the defected TSVs.

3.1.2 Software approach

In the software approach, the basic methods are (1) program redundancy [124, 125] and (2)

creating a checkpoint and rolling back when a fault is detected [103]. Figure 3.4 depicts these

two methods. In the programming redundancy, copies of the program are executed in parallel to

detect and correct the occurred faults. A voting module can be used as a recovery. The second

method creates checkpoints of the process and when a fault is detected, the system rolls back to
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Figure 3.4: Software approach: (a) Program redundancies; (b) Checkpoint/Restart and Roll-back.

Hard Fault Tolerance

Software approaches are limited to hard fault tolerance. Because the presence of hard faults is

permanent, the system has to roll-back and usually correct. Even the fault can be corrected, it

significantly effect the system performance.

However, using software for testing and finding the best recovery methods and configurations is

a promising solution. In [66], the authors propose an optimization program to re-route the TSV.

This program is implemented in software [80]. The work by Shamshiri et al. [126] and FoReVer

framework [118] are also examples of using software programs to detect and recover the faults.

Soft Error Tolerance

The software approach is more common in soft error resilience. For soft errors, the fault-

tolerance is classified into two main objects: data path and control logic. In the data path, most

works use code-based techniques that not only detect the integrity of the received data; but, also

provide a correction function up to an acceptable number of faults. For instance, Bertozzi et al. [65]

analyzed several low-cost coding techniques for on-chip communication. As an adaptive solution,

Yu et al. [100] presented a dynamic ECC based on the quality of the wire connection by using a

configurable ECC with two Hamming codes to adapt to several probabilities of faults. Although

this adaptive ECC provides energy efficiency, its area overhead is problematic. Even if the soft er-

ror cannot be corrected, the data can also be forwarded (as known as FEC: Forward Error Coding)

to be recovered later.

For soft errors in the control logic, there are several techniques with cross-layer resolution. In

the End-to-End level, Shamshiri et al. [126] proposed error-correction and online diagnosis using
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a specific code named 2G4L. Based on the position of the erroneous bit in the received data, the

system can indicate the position of the faulty node in the network; however, when a packet is mis-

routed due to wrong routing information/arbitration or an adaptive routing algorithm, the path

of a packet is not fixed in a way that can determine the faulty node. To ensure arbitration com-

putation across layers, NoCAlert [117] implements constraints to obtain computational accuracy.

By constraining the relationship between the input and output of a block, the system can detect

both soft and hard faults. Although this work presents an efficient detection, it lacks efficiency in

recovering from soft errors. First, the system needs to distinguish between soft and hard faults to

decide the recovery method. Second, soft errors cannot be recovered by spatial redundancy and

their recovery in the End-to-End level is inefficient. The FoReVer framework [118] also presented

a network level method to detect and recover from routing errors: lost, duplicated, and misrouted

packets. Since FoReVer is based on End-to-End detection and recovery, dealing with soft errors

requires retransmission of the whole packet instead of an online recovery.

In [102], the authors deploy a monitoring system on important control modules. They can

diagnose the output to find the failure. This technique is light-weight in both area and power

and has an insignificant impact on the system performance. However, it suffers from the lack

of flexibility since the monitor module has to be specifically designed depending on the target

component. If any changes in the routing algorithm or pipeline stages are needed, investigation

and re-design of the monitor module are mandatory.

TSV Defect Tolerance

In the System layer, which focuses on 3D-NoCs, fault-tolerant routing [122] is one of the most

suitable solutions. To reduce the risk of thermal and stress issue in 3D-ICs, thermal-aware man-

agement [67, 127] is also a promising solution. On the other hand, most of the works proposed

offline testing and recovery which is not suitable for post-manufacturing. The system operation

has to be halted in order to be tested and recovered. In [74, 80], the authors presented an online

testing function. Because the reliability of TSVs is a critical issue, the need for online testing and

recovery is important.
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3.1.3 Integration approach

Unlike the architecture approach, the integration one focuses on improving the quality of de-

vices. Here, it mostly focuses on the Physical layer and physical design phases. The improvements

in manufacturing technologies are considered.

Hard Fault and Soft Error Tolerance

In this type of approach, designers focus on how to protect the circuit against the potential

fault source. For example, to prevent cross-talk, designers insert GND wires solely with signal

wires [128]. Radiation hardened systems [129, 130] are also popular in military and space appli-

cations.

For soft errors, Ernst et al. [101] presented a Razor D Flip-flop with an additional shadow latch

sampled by a delayed clock for checking the occurrence of transient faults (see Fig. 3.5). Further-

more, a soft error detection solution based on redundant latches was also presented by Ravindan

et al. [131]. Although these techniques obtain more efficient detection results, they nearly double

the area overhead and power consumption to maintain the redundant latches.

Figure 3.5: Razor D Flip-flop [101]: (a) Architecture; (b) Waveform.

TSV Defect Recovery

In Physical layer, the improvement in TSV manufacturing can help to reduce the defect rate

[104]. Designers can optimize the physical layout, use thermal-aware routing and placement

methods to improve the reliability of 3D-ICs [33, 67, 71]. Even when a fabricated TSV has a short

defect, a correction circuit uses a voltage comparator to gain the output voltage of the TSV [73].

To enhance the reliability of TSVs, [105] proposed a method named Double TSV which uses two

TSVs instead of one for maintaining the communication (see Fig 3.3(b)). If an open, short-to-
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substrate or bridge defect occurs in one TSV, the communication is still performed by the other

TSV.

3.2 Reliability Assessment

The last section have shown the existing fault-tolerant techniques for soft errors, hard faults

and TSV defects. Most of the works use fault injection and verification as the methodology of

reliability evaluation. However, designers have to fully implement the system for the test. To

help them understand the reliability in the early stages, there are numerous works on reliability

assessment which are presented in this section.

Table 3.2: Reliability assessment methodologies.

Method Description Type
Physical Failure Anal-
ysis [109]

The acceleration factors of the failure rate are defined as:
Oxide, Metalization, Hot Carrier, Contamination, Pack-
age, EOS/ESD (Electrical Overstress/ Electrostatic Dis-
charge) and Miscellaneous Failure Rate

physical-level

Soft Error Rate Esti-
mation [110]

This simulation flow uses a random function to generate
hit locations and perform analysis using HSPICE simu-
lation. This aims to obtain the probability of soft errors
with several physical parameters.

physical-level

Chip-level Soft Error
Estimation [132]

The authors present a method to estimate the failure of a
full-chip. It is based on timing analyses of basic devices.
A combination of these analyses help build the final full-
chip failure rate.

physical-level and
system-level simula-
tion

Monte-Carlo Simula-
tion [43, 133]

A random error injection and function verification to
measure the reliability of the system under failure.

system-level simula-
tion

System Reliability
Block Diagrams [43]

This model presents the logic relationship of the system
components. There are five basic systems: series, parallel,
stand-by, k-out-of-n and complex systems. All of these
systems are analyzed using the probability theory.

analytical model

Fault-tree Analy-
sis [43]

A graphical and logical representation of possible events
occurring in a system.

analytical model

Markov Model [43,
134]

It models the system’s possible failure situations as a set
of states. There are possible failure rates and repair rates
between two states. The final reliability of the system is
obtained by calculating the probability of dead-end state.

analytical model

TSV Failure Analy-
sis [35]

This analytical model analyzes the probability of failure
of 3D-NoCs under the failure of TSVs. In 3D-NoCs,
TSVs are used as the vertical connection wires.

analytical model (for
NoCs)

NoCs Reliability
Analysis [116]

Thismodel estimates the reliability of a NoC system using
probability theory.

analytical model (for
NoCs)

Table 3.2 shows the different methodologies used to analyze a given system’s reliability. Here,

we categorized them into three basic methods: Physical-level analysis, System-level simulation, and

Analytical models.
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Figure 3.6: Monte-Carlo Simulation.

The Physical-level analysis [109–111] can obtain accurate results for gates or small devices. The

task of the Physical-level analysis is to analyze the circuit using a specified simulator or physical

analysis; however, it is time-consuming and requires a huge computation resource to analyze com-

plex systems. The System-level simulation can be performed by Monte-Carlo simulations [43] or

simple RTL-level simulations [41, 112, 113]. Figure 3.6 shows the flow-chart of Monte-Carlo

simulation. Faults are inserted randomly and the final reliability is the average value of the suc-

cessful tests. In order to evaluate the system’s reliability, the Mean Time To Failure [42] estimation

can be used. Beside analysis, design-awareness is one of the most important keys to obtain reliable

systems [135–138].

The Analytical models [35, 38, 139–143] can be used to save a significant amount of time wasted

on redesign. The IEEE 1413.1 [43] recommends several methods: System Reliability Block Dia-

grams, Fault-tree Analysis, and Markov-model for repairable systems. The most basic method is the

System Reliability Block Diagrams where the system is modeled in logic relationships and the results

are obtained by using probability theories. To reduce the system complexity, the cut-sets method

can calculate the sub-system and merge them into the final system. The Fault-tree Analysis exploits

the operation of a given design to obtain the possible events of the system. The above methods

have a common drawback which manifests in their lack of flexibility and reconfigurability when it
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comes to a reconfigurable and repairable system. This can be dealt with using the Markov model

which analyzes the system’s events, configurations, and behaviors as states and builds a graph-

based model. After that, the reliability of the system can be obtained. More details about Markov

state model are discussed in Section 6.2.1. Analytical models for NoCs are recently presented

[144–147]. A reliability assessment for TSV failure in 3D-NoCs is addressed in [35, 148]. The

reliability of a NoC is also analyzed in [116]. These methods have provided promising solutions for

NoCs’ reliability assessment; however, they lack the support for fault-tolerant and highly complex

systems.
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4
Hard Fault and Soft Error Tolerant

Architecture

R
eliability is becoming the critical requirement for future Systems-on-Chip,

especially 3D-NoCs. In spite of the benefits of using 3D-NoCs, systems are threaten

by multiple types of faults. To solve this issue, many researchers have proposed so-

lutions for various individual aspects of on-chip reliability; however, a comprehensive approach

encompassing both soft errors and hard faults pertaining to NoC reliability has yet to evolve. In

addition, the error detection and diagnosis in NoC architectures have been studied thoroughly in

the scope of offline testing; however, with soft errors and intermittent faults becoming a domi-

nant failure mode in modern NoCs and general VLSI systems, a widespread deployment of on-
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line test approaches has become crucial. In this chapter, comprehensive soft error and hard fault

tolerant 3D-NoC architecture, named 3D-Hard-Fault-Soft-Error-Tolerant-OASIS-NoC (3D-

FETO), is presented. With the aid of efficient mechanisms and algorithms, 3D-FETO is capable

of detecting and recovering from soft errors occurring in the routing pipeline stages and lever-

ages reconfigurable components to handle permanent fault occurrences in links, input buffers, and

crossbars.

The organization of this chapter is as follows: Section 4.1 presents the adaptive router architec-

ture (SHER-3DR) which is the backbone component of the 3D-FETO system. Section 4.2 and

4.3 depicts the hard fault and soft error tolerant techniques. In Section 4.4, comprehensive tech-

niques, which include fault detection, diagnosis and recovery, are presented. Section 4.5 provides

the implementation and evaluation results. Finally, this chapter presents conclusion and discussion

in the last section.

4.1 Adaptive 3D Router Architecture
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Figure 4.1: Adaptive 3D router (SHER-3DR) architecture.

Figure 4.1 shows the block diagram of the proposed adaptive 3D router architecture (SHER-

3DR). The router relies on simple recovery techniques based on system reconfiguration with re-

dundant structural resources to contain hard faults in the input-buffers, crossbar, and links, in

addition to soft errors in the routing pipeline stages.

The SHER-3DR router is the backbone component of the 3D-FETO system. Each router
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has a maximum of 7-input and 7-output ports, where 6 input/output ports are dedicated to the

connection to the neighboring routers and one input/output port is used to connect the switch

to the local computation tile. As shown in Fig. 4.1, the SHER-3DR contains seven Input-port

modules for each direction in addition to the Switch-Allocator, and the Crossbar module which

handles the transfer of flits to the next node. An Input-port module is composed of two main

elements: an Input-buffer and the LAFT routing (Next-Port-Computing) module. Incoming flits

from different neighboring routers, or from the connected computation tile, are first stored in the

Input-buffer. This step is considered as the first pipeline stage of the flit’s life-cycle, Buffer-Writing

(BW). After receiving and storing the flits, their routing information is read and processed by a

LAFT-Routing module (Next-Port-Computing) and an arbitration module (Switch-Allocator). This

step is the second stage -Next-Port-Computing/Switch-Allocator (NPC/SA). After theNPC/SA

pipeline stage, the next-port value is embedded in the flit and the grant signal allows the flit to

traverse from its input port to an output port (Crossbar-Traversal (CT) stage).

An augmented Look-Ahead-Fault-Tolerant routing algorithm (LAFT) [149, 150] is used to

perform the routing decision. If a given flit is routed to the local port, there is no routing calcu-

lation. If the flit is to be routed to another node, the faulty links information of all neighboring

nodes is read by each input-port and LAFT routing is executed. The first phase of the algorithm is

calculating the next node’s address and its fault output information. In the next phase, the LAFT

routing algorithm determines the minimal paths which are valid for routing after eliminating the

faulty paths. The final routing path is selected by evaluating two factors of all the possible routing

paths: (1) the diversity of the routing path to the destination node and (2) the congestion value

of the connection. If there is non-minimal routing path, a similar approach is applied for the

non-minimal routing paths. Finally, an output port for the selected routing is calculated. This in-

formation is embedded in the flit as next-output-port bits for routing in the downstream node [98].

4.2 Hard Fault Tolerance

In this work, the hard fault tolerant architectures and algorithms are adopted from the previous

works in our laboratory.1

1Readers who are interested in the complete details of the hard fault-tolerance techniques, are recom-
mended to check the works in [94, 98, 122, 123].
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4.2.1 Fault-tolerant routing algorithm

To keep the benefits of look-ahead routing [149, 150], the augmented Look-Ahead-Fault-

Tolerant routing algorithm (LAFT) [94] is able to perform the routing decision for the next node

taking its link status into consideration and selecting the best minimal path. The fault link informa-

tion received from the DDRM (DetectionDiagnosis RecoveryMechanism) is read by each input-port

where LAFT is executed. Algorithm 4.1 illustrates the LAFT algorithm. The first phase of this

algorithm calculates the next node address depending on theNext-port identifier read from the flit.

For a given node wishing to send a flit to a given destination, there is a maximum of three possible

directions through the X, Y, and Z dimensions. In the second phase, LAFT performs the calcula-

tion of these three directions by comparing the X, Y and Z coordinates of both the current and the

destination node concurrently. As these directions are being computed, the LAFT routing algo-

rithm reads theNext-port identifier from the flit and sends the appropriate fault information to the

corresponding input-port. By the end of this second phase, LAFT has information about the next

node’s fault status and also the three possible directions for minimal routing. In the next phase,

the routing selection is performed. For this decision, we adopted a set of prioritized conditions to

ensure fault-tolerance and high performance either in the presence or absence of faults:

1. The selected direction should ensure a minimal path and it is given the highest priority in

the routing selection.

2. The algorithm should select the direction with the largest next router path diversity.

3. The congestion status is given the lowest priority.

Depending on these priorities, LAFT reads the fault status of the next node received from the

Fault-manager module and checks the number of possible non-faulty minimal directions. As il-

lustrated in Algorithm 4.1, if only one non-faulty minimal direction is obtained, this direction

is selected as the output port for the next node. If more than one possible minimal direction is

available, the algorithm selects the direction which leads to the node with higher path diversity.

The diversity value for a given node is the number of possible directions leading to the destination

through a minimal path. A node with high diversity results in more routing choices. This means

that the probability of finding a non-faulty link is greater when considering faults. When no faults
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are detected in the system, selecting the direction with the highest diversity gives more choices to

find the least congested direction. As stated in [151], to obtain directions with high diversity, we

should select those leading to nodes located in the center of the mesh and avoid routing to the

edges of the network.

Algorithm 4.1: Look-Ahead-Fault-Tolerant routing algorithm
// Destination address
Input: Xdest, Ydest, Zdest
// Current node address
Input: Xcur, Ycur, Zcur
// Next-port identifier
Input: Next-port
// Link status information
Input: Fault-in
// New-next-port for next node
Output: New-next-port
// Calculate the next-node address

1 Next← Next-node (Xcur, Ycur, Zcur, Next-port);
// Read fault information for the next-node

2 Next-fault← Next-status (Fault-in, Next-port);
// Calculate the three possible directions for the next-node

3 Next-dir← poss-dir (Xdest, Ydest, Zdest, Nextx, Nexty, Nextz);
// Evaluate the diversity number of three minimal paths

4 Div ← path-div (Xdest, Ydest, Zdest, poss− dir);
5 Div ← path-div (Xdest, Ydest, Zdest, poss− dir);
6 Div ← path-div (Xdest, Ydest, Zdest, poss− dir);

// Evaluate the New-next-port direction
7 if (|Next-dir|> 1) then
8 if (Div==Div==Div) then
9 New-next-port← min-congestion (poss− dir, poss− dir, poss− dir);

10 else
11 New-next-port← max-diversity (poss− dir, poss− dir, poss− dir);

12 else
13 if (Next-dir == 1) then
14 New-next-port← Next− dir;
15 else New-next-port← nonminimal (Xdest, Ydest, Zdest, Xcur, Ycur, Zcur, Fault-in);

When the three possible directions are minimal and have the same diversity, the routing se-

lection is made depending on the congestion of each output port. This congestion information is

obtained by the Stop signal issued from the flow-control used in our 3D-FETO system. When no

valid minimal route is available, LAFT chooses a non-minimal route while also considering the

second and third priorities (path diversity and congestion), as illustrated in Algorithm 4.1.
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4.2.2 Buffer Fault Tolerance

The block diagram of the hard fault recovery mechanism is shown in Fig. 4.2. The Random

Access Buffer mechanism (RAB) [98] solves the deadlock problem that can occur with the look-

ahead fault-tolerant routing algorithm (LAFT), and is able to recover from transient, intermittent,

and permanent faults in the input-buffer. When a fault is detected in one of the slots, the main

controller (located in input port manager in Fig. 4.1) considers the flagged slots when assigning the

write and read addresses. It remains to check the flagged slots for recovery from the faults.

4.2.3 Crossbar Fault Tolerance

The Bypass Link on Demand mechanism (BLoD) [98] provides additional escape channels

whenever the number of faults in the baseline 7x7 crossbar increases. When a fault is detected in

one or several crossbar links, the fault_manager (depicted in Fig. 4.1) disables the faulty crossbar

links and enables the appropriate number of bypass channels. The number of Bypass-links is very

important and it should be minimized as much as possible to reduce the area and power over-

head. In a case where the number of faulty links is larger than the number of backup links, the

system needs to mark the links as faulty and use the LAFT algorithm to avoid routing through

this defective connection.

4.3 Soft Error Tolerance

As represented in Fig. 4.3, the principal soft-error handling method in the proposed 3D-FETO

system relies on a solution called Pipeline Computation Redundancy (PCR) [103, 152, 153].

For ease of understanding, we explain the PCR in Algorithm 4.2. The Next Port Computing

(NPC) and Switch Allocator (SA) run in parallel (line 2,3) after the Buffer Writing stage. This

is achieved by the LAFT routing algorithm, where the dependency between the two stages is

eliminated. After the first computation, both of the two stages have an additional computation

clock cycle (line 4, 5). By comparing two consecutive results, soft errors are detected. If a soft

error is detected, the whole pipeline is halted for correction. A third computation is required for

majority voting, which decides the final result. To recover from soft errors in the data, Single Error

Correction Double Error Detection (SECDED) [154] with ARQ (Automatic Retransmission

Request) [99] is adopted.
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Algorithm 4.2: Algorithm of Pipeline Computation Redundancy (PCR).
// input flit’s data
Input: in_flit
// output flit’s data
Output: out_flit

// Write flit’s data into buffers
1 BufferWriting(in_flit)

// Compute first time of NPC and SA
2 next_port[1] = NextPortComputing(in_flit)
3 grants[1] = SwitchAllocation(in_flit)

// Compute redundant of NPC and SA
4 next_port[2] = NextPortComputing(in_flit)
5 grants[2] = SwitchAllocation(in_flit)

// Compare orginal and redundant to detect soft-error
// Soft-error on NPC

6 if (next_port[1] ≠ next_port[2]) then
// roll-back and recalculate NPC

7 next_port[3] = NextPortComputing(in_flit)
8 final_next_port = MajorityVoting(next_port[1,2,3]);
9 else

// No soft-error on NPC
10 final_next_port = next_port[1]

// Soft-error on SA
11 if (grants[1] ̸= grants[2]) then

// roll-back and recalculate SA
12 grants[3] = SwitchAllocation(in_flit)
13 final_grants = MajorityVoting(grants[1,2,3])
14 else

// No soft-error on SA
15 final_grants = grants[1]

// After detection and recovery, the algorithm finishes with CT
16 out_flit = CrossbarTraversal(in_flit, final_next_port, final_grants);

In the first stage, flits are stored in the input buffer at the Buffer Writing (BW) stage, and

the ECC is used to check and correct the input data in the ECC module. In the second stage,

the NPC and the SA are executed in parallel in the LAFT routing unit and the Switch-Allocator

module. In the third stage, the Redundant NPC (RNPC) and the Redundant SA (RSA) are

computed in parallel. Then, if the output of RNPC is equal to that of NPC, and SA is equal to

RSA, the Crossbar Traversal (CT) stage is performed in the third cycle, and the flit goes to the

next router via the output channel. If the RNPC is not equal to the NPC, the system rolls-back

and recomputes the NPC. Moreover, if SA is not equal to RSA, the system also rolls-back and

re-computes the SA stage. After rolling-back and re-computing, a majority voting module is used

to decide the correct output of these modules. The rolling-back, re-computing and voting are
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executed. Then, the outputs of NPC/SA are sent to the Crossbar Traversal stage to finish the flit

transmission.

Cycle BW NPC/SA (PCR) CT

1st 𝑓𝑙𝑖𝑡(1) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

2nd 𝑓𝑙𝑖𝑡(2) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(1) 𝑤𝑎𝑖𝑡 𝑖𝑑𝑙𝑒

3rd 𝑓𝑙𝑖𝑡(3) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(2) 𝐜(𝟏)
𝑐 1 = 𝑇: 𝑓𝑙𝑖𝑡 1

𝑐 1 = 𝐹: 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝑇 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡(2) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝐹 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(3) 𝐦𝐣𝐯(𝟏) 𝑓𝑙𝑖𝑡 1

𝑓𝑙𝑖𝑡(𝑛) : flit 𝑛𝑡ℎ in a packet.

𝑡𝑖𝑚𝑒 𝑚 : the flit’s computation at the 𝑚𝑡ℎ time.

𝑐(𝑛) : flit 𝑛𝑡ℎ comparison. 𝑇 = 𝑇𝑟𝑢𝑒; 𝐹 = 𝐹𝑎𝑙𝑠𝑒
𝑚𝑗𝑣(𝑛) : flit 𝑛𝑡ℎ finalization based on majority voting. 

: Input direction

BW  : Buffer Writing

NPC: Next Port Computing

SA   : Switch Allocation

CT   : Crossbar Traversal

PCR: Pipeline Computation Redundancy

Figure 4.4: SHER-3DR working demonstration.

Figure 4.4 presents a working demonstration of the SHER-3DR router. [flit(n)] represents the

flit in the nth position of the packet. [time(m)] illustrates the mth time of computation. In the first

clock cycle, BW handles [flit()] while NPC/SA and CT are idle or are handling another packet.

In the second cycle, NPC/SA computes [flit(), time()], which means the computation of the

first flit for the first time. In the third cycle, NPC/SA computes [flit(), time()], which means

that it computes the first flit for the second time, also known as the redundant computation. [c()]

compares the results of [flit(), time()] and [flit(), time()] to detect the occurrence of a soft error.

If there is no error, CT processes [flit(), time()] to finish the pipeline stages of the first flit. If there

is an error in NPC/SA, the system requires the recovery in the fourth cycle. In this cycle, NPC/SA

recalculates the first flit for the third time for recovery ([flit(), time()]) and finalizes an accurate

result by using majority voting ([f()]). After getting the final result of the first flit, CT completes

the pipeline stage of the first flit based on the correct result of the two previous computations:

[flit(), time()] or [flit(), time()]. As shown in Fig. 4.4, the router requires one clock cycle for

detecting a soft-error and one optional cycle for recovering each time an error occurs.

4.3.1 Error Correction Code

In this work, we use anECC,which is Single ErrorCorrectDouble ErrorDetection (SECDED) [154],

to deal with soft errors, and to support the detection and diagnosis mechanisms, as explained later.
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This SECDEDcode is selected due to its balanced trade-off between the fault-tolerance capacity

and the overhead in area cost and power consumption [65]. Moreover, we adopted theHARQ [99]

mechanism, which allows to retransmit the error flit, as a flow-control. If the faulty bit can not

be corrected but can be detected by the SECDED code, an ARQ signal is sent to the sender to

request a retransmission. Because soft errors only occur in a short period of time, retransmitting

the faulty flit can correct the faulty bit. Note that any dual detection-correction systematic coding

technique can be used in our router architecture.

4.4 Detection, Diagnosis and Recovery Mechanism

Algorithm 4.3 shows the proposed Detection, Diagnosis and Recovery Mechanism (DDRM). It

uses the feedback from the ECC and the Automatic Retransmission Request (ARQ) protocol to

monitor the errors. As shown in Fig. 4.1, the input data is first verified by an ECC decoder. If

the value is correct or the ECC decoder can handle the correction, the flit is written to the input

buffer. Otherwise, a retransmission is requested. Since the transient fault only occurs over a short

period of time, assumed to be a single clock cycle, it does not occur for two consecutive cycles.

Therefore, ARQ can recover this kind of fault. However, if a permanent fault occurs, ARQ is

unable to correct it and the faulty connection keeps requesting retransmission infinitely. Therefore,

if the ARQ cannot correct the fault, the system considers it to be a permanent fault (line 1-10 in

Algorithm 4.3).

Since a flit’s correctness is verified by the ECC module before being written to the buffer, a

permanent fault can only occur in the path between the input-buffer in the upstream node and the

one in the downstream node. Figure 4.5 shows the high-level view of the DDRM and Router-to-

Router interfacing. The transmission path of a flit consists of three main components: input buffer

slots, a crossbar link and a router-to-router channel. When a fault is detected, DDRM diagnoses

these two components to find the fault position and recover it with an appropriate mechanism.

For the diagnosis and recovery phase, the router’s Fault-manager module initiates the diagnosis

with input buffer checking. In this step, the error statuses of the following flits of the monitored

input buffer are checked. If errors are detected in the following flits’ transmission, it means the

fault should belong to the crossbar link or the inter-router channel. The diagnosis is forwarded to

check the crossbar and inter-router channel. If errors are constantly detected at the same position
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Algorithm 4.3: Fault Detection, Diagnosis and Recovery.
// Automatic Retransmission Request
Input: transmitting_flit
// Transmitted Buffer Position
Input: buffer_position
// Control signal to all Fault-Tolerance modules
Output: RAB_control, BLoD_control, LAFT_control
// Transmit the flit, get the ECC’s feedback

1 Transmit(transmitting_flit);
2 ECC_result = ECC-Decoder(transmitting_flit);

// DETECTION PHASE:
3 if ECC_result == ARQ then

// Automatic Retransmission Request
4 increase(ARQ_counter);
5 ARQ (transmitting_flit);
6 else

// The transmitted flit is non faulty
7 Finish;

// Check the number of consecutive ARQs
8 if (ARQ_counter == ) then

// There is a permanent fault
// Jump to DIAGNOSIS-RECOVERY PHASE

// DIAGNOSIS-RECOVERY PHASE:
// Start with Input Buffer Checking

9 Buffer_Failure← Buffer_Checking(buffer_position);
10 if (Buffer_Failure == Yes) then

// Random Access Buffer is received the position to handle.
11 RAB_Control = buffer_position;
12 Finish;
13 else

// The buffer slot is non faulty.
// Move to Crossbar Checking: using a Bypass-Link.

14 BLoD_control = enable;
// Get the ECC’s feedback and detect with ARQ counter.

15 if (ARQ_counter == ) then
// BLoD cannot fix the fault, the link is failed.

16 BLoD_control = release;
// The LAFT routing algorithm handles the faulty link.

17 LAFT_control = faulty;
18 Finish;
19 else

// BLoD already fixed the failure, the recovery step is finished.
20 Finish;
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of the monitored buffer, the fault belongs to this detected position. In this fashion, the Fault-

manager sends a signal to the Random Access Buffer (RAB) mechanism to indicate the faultiness of

the slot in the input buffer (line 11-14). If the fault-manager indicates that the fault may belong

to the crossbar or inter-router channel, the Fault-manager first configures the Bypass-Link-on-

Demand (previously presented in Section 4.2) to establish an alternative connection path. Then,

another flit is sent from the input buffer through a bypass-link and the router-to-router channel

to the downstream node. If, at the downstream node, the flit is found to be not faulty by the ECC

module, the Fault-manager concludes that the fault is in the Crossbar, which is already handled by

the BLoD mechanism. Therefore, the configuration of the BLoD is kept as a recovery. If the flit

is still faulty, the fault belongs to the inter-router channel. In this situation, the BLoD is released

for further fault-tolerance and the information of the faulty channel is sent to the routing module

(in LAFT algorithm). At the routing module, the Look-Ahead Fault-Tolerant routing algorithm

uses the fault information to handle the channel’s failure. The flit in the input buffer is re-routed

via an alternative output port.

4.5 Evaluation Results

4.5.1 Evaluation Methodology

The proposed 3D-FETO system was designed in Verilog-HDL, synthesized and prototyped

with commercial CAD tools and VLSI technology, respectively [155, 156]. We evaluate the hard-

ware complexity of the SHER-3DR router in terms of area utilization, power consumption (static

and dynamic), and speed. To evaluate the performance of the proposed system, we select both syn-

thetic and realistic traffic patterns as benchmarks. For synthetic benchmarks, we selected Trans-

pose [157], Uniform [158], Matrix-multiplication [159, 160], and Hotspot 10% [161]. For re-

alistic benchmarks, we chose H.264 video encoding system [162], Video Object Plane Decoder

(VOPD), Picture In Picture (PIP) and Multiple Window Display (MWD) [163]. The simulation

configurations are depicted in Table 4.1.

The above synthetic benchmarks help us understand the performance of the network under

stress; however, we also need several realistic benchmarks to understand the network under real

application traffic. Therefore, we build a simulator in Verilog-HDL which allows us to set up the
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Table 4.1: Simulation configurations.

Parameter/System Value

Network Size (x× y× z)

Matrix × × 
Transpose × × 
Uniform × × 

Hotspot 10% × × 
H.264 × × 
VOPD × × 
MWD × × 
PIP × × 

Total Injected Packets

Matrix 1,080
Transpose 640
Uniform 8,192

Hotspot 10% 8,192
H.264 8,400
VOPD 3,494
MWD 1,120
PIP 512

Packet’s Size Hotspot 10% 10 flits + 10% for hotspot nodes
Others 10 flits

Flits Size 44 bits
Header Size 14 bits

Payload Bit Baseline, 3D-FTO 30 bits
Soft Error Tolerance, 3D-FETO 18 bits

Parity Bit Baseline, 3D-FTO 0 bits
Soft Error Tolerance, 3D-FETO 12 bits (× SECDED(22,16))

Buffer Depth 4
Switching Wormhole-like

Flow-control Stop-Go
Routing LAFT

traffic patterns from real applications. Based on the traffic patterns, the Network Interfaces send

and receive packets over the networks. We select a video encoding system using a H.264 encoder,

a MP3 encoder, and a OFDM [162]. Moreover, we select three applications [163]: VOPD, PIP

and MWD.

We evaluate the performance of our fault-tolerant system which includes hard fault tolerance

from 3D-FTO [98], Soft-Error Tolerance OASIS system, and the proposed system (3D-FETO).

We measure the average packet latency, with the selected synthetic and realistic benchmarks. To

understand the impact of fault-tolerance techniques on performance, we compare the obtained

results with the baseline 3D-NoC system presented in [149]. We randomly inject faults at three

fault-rates: 10%, 20% and 33%. The faults are injected into hard fault tolerant and soft error

tolerant modules. For the soft error tolerant system, only soft errors are injected. For the hard

61



fault tolerant (3D-FTO) system, only hard faults are injected. For the final system (3D-FETO),

both soft errors and hard faults are injected. Hard faults are injected at the beginning of simulation

and their rate is measured as the percentage of routers with faults. Soft errors are injected during

the system’s operation and their rate is considered to be the number of soft errors per clock cycle.

The injected fault rates are considered individually for each error type.

4.5.2 Complexity Evaluation

In this evaluation, we considered the hardware complexity of the proposed SHER-3DR router.

For this evaluation, we use the NANGATE 45nm technology library [156]. Area cost and power

consumption analyses are performed with Synopsys ©Design Compiler. The power consumption

information is analyzed based on the switching activity of the router under the uniform benchmark.

We start first by observing the additional hardware added to the baseline system when we employ

the hard fault tolerance model (3D-FTO router). Then, we evaluate the impact when we consider

the soft error tolerant model (Soft Error Tolerant router). Finally, we evaluate the completed

3D-FETO system including both soft and hard fault tolerant mechanisms. The configurations of

the network are shown in Table 5.4 and the layout of a single SHER-3DR router is depicted in

Fig. 4.7.

Table 4.2: Hardware complexity evaluation and comparison results.

Area Power Speed
Model (µm) (mW) (Mhz)

Static Dynamic Total
Baseline LAFT router 18,873 5.1229 0.9429 6.0658 925.28
3D-FTO router 19,143 6.4280 1.1939 7.6219 909.09
Soft Error Tolerance router 27,457 9.7314 2.6710 12.4024 625.00
SHER-3DR 29,516 10.0819 2.7839 12.8658 613.50

Table 4.2 illustrates the hardware complexity results of SHER-3DR router in terms of area,

power (static, dynamic, and total), and speed. In the hard fault tolerance router (3D-FTO), the

area and power consumption overheads have increased by 1.43% and 25.65%, respectively. The

maximum speed has also slightly decreased. On the other hand, our soft error handling mecha-

nism adds seven ARQ buffers and some combinational logic which increase the area and power

consumption more significantly. However, SHER-3DR introduces 7.50% and 3.74% extra area

and power consumption, respectively, when compared to the soft error tolerant model. In com-
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parison to the baseline model, SHER-3DR increases the area and power consumption by 56.39%

and 112.10%, respectively, while the maximum speed decreases by 33.70%.

The area cost and power consumption of the proposed router is given by Equation 4.1 where πi

represents the area cost or power consumption of module i. The SHER-3DR router consists of

four main modules: input-ports, switch-allocator, crossbar, and fault manager.

πrouter = πinput−ports + πswitch−allocator + πcrossbar + πfault−manager (4.1)

The details of an input port, a switch-allocator and a crossbar are given in Equation 4.2.

πinput−ports = πoriginal−input−ports + πRAB−controller + πPCR−controller + πECC

πswitch−allocator = πoriginal−switch−allocator + πPCR−monitor

πcrossbar = πoriginal−crossbar + πbypass−links + πARQ−buffers

(4.2)

We can observe the overheads in power consumption and area cost that are caused by the fault-

tolerant mechanisms (RAB-controller, PCR-controller, ECC, BLoD, ARQ buffers). Figure 4.6

provides the evaluation results of power consumption and area cost of SHER-3DR. In terms of area

cost, the input ports occupy the majority with over 67% which is followed by the crossbar (20%)

and the switch allocator (9%). The fault manager, which supports DDRM, uses only about 4% of

the overall area cost. In terms of power consumption, the input ports consume over 80% of the

total value. The fault manager module also causes an insignificant increase in power consumption

(3%).

When compared to the baseline OASIS router, the proposed SHER-3DR consumes more

power consumption and costs more area. As shown in Fig. 4.6, SHER-3DER increases the area

and power of all three main modules (crossbar, input ports, and switch-allocator). The overhead

can be analyzed by Equation 4.2 where additional modules are attached to support the fault-

tolerance mechanisms.

Although our proposed system is penalized in terms of area, power consumption, and maximum

frequency due to additional logic and registers that are necessary for fault handling mechanisms,
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Figure 4.6: Area cost and power consumption analysis.

it provides an improved resiliency against a significant amount of soft and hard faults.

4.5.3 Latency Evaluation

In the second experiment, we evaluate the performance of the proposed architecture in terms of

latency over various benchmark programs and error injection rates for three system configurations:

(1) Hard-fault tolerant system (3D-FTO), (2) Soft-error tolerant OASIS system, and (3) Hard-

fault and Soft-error tolerant system (3D-FETO). The simulation results are shown in Figs. 4.8 and

4.9. From these graphs, we notice that with 0% hard faults (in input buffer and crossbar only), 3D-

FTO has similar performance to the baseline system (LAFT-OASIS). In addition, we found that

even at a 33% fault-rate, 3D-FTO increases the latency by only 1.71%, 11.38%, 8.79% and 13.73%

for Transpose, Uniform, × Matrix, and Hotspot-10%, respectively. With realistic benchmarks,

the performance of 3D-FTO slightly degrades at low error-rates; but, it suffers more of an impact

at high error-rates (20% and 33%) since the flit encounters bottlenecks due to errors inside the input

buffers. However, the proposed 3D-FETO model still works even at high fault-rates while the

baseline model collapses at a 5% error-rate. We used the same benchmark programs to evaluate the

soft error tolerant system. Since both the proposed Pipeline Computation Redundancy mechanism

and ECC require additional clock cycles, we can observe a significant effect on average packet

latency. For the 0%, 10%, 20% and 33% fault-rates, the Soft Error Tolerant model increases the

average delay in the Transpose benchmark by 18.57%, 28.74%, 34.54% and 49.62%, respectively.

Finally, we evaluate the proposed 3D-FETO system with both soft error and hard fault handling
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Figure 4.7: Layout of a single SHER-3DR router for the 3D-FETO system. The SHER-3DR router
was designed in Verilog-HDL and synthesized using 45nm technology library. For the Through Silicon
Via (TSV) integration, we used FreePDK3D45 kit compiler. The SHER-3DR router is designed on a
µm× µm and the TSV array contains 208 TSVs.

schemes. As shown in Figs. 4.8 and 4.9, 3D-FETO has demonstrated a significant impact on the

average latency, which has mostly doubled for both realistic and synthetic benchmarks. At a 33%

fault-rate using Matrix, Uniform, Transpose benchmarks, 3D-FETO’s average latency increases

by 78.44%, 50.73% and 67.18% in terms of average packet latency. The degradation is caused by

both soft errors and hard fault tolerance mechanisms: (1) the ECC+ARQ and PCR both require

additional re-transmission clock cycles; (2) the RAB and LAFT routing algorithm may disable a

part of the network which causes congestion. However, it still maintains the ability to work under

an extremely high fault-rate (33% for hard faults and 33% for soft errors).

4.5.4 Throughput Evaluation

Figure 4.10 depicts the throughput evaluation with the adopted synthetic benchmarks. At a 0%

error rate, 3D-FTO (hard-fault tolerance) presents the best throughput which matches the capac-

ity of the baseline LAFT-OASIS. The Soft Error Tolerant OASIS and the proposed 3D-FETO

have less throughput due to their soft error tolerance mechanisms. When the errors are injected

into the system, we can observe a degradation in throughput. Thanks to the efficient hard fault

tolerant scheme and the fault-tolerant routing algorithm, 3D-FTO at a 33% error-rate provides a

slightly decreased throughput: 40.18%, 43.96%, 43.55% and 32.59% for Transpose, Matrix, Uni-

form, and Hotspot 10%, respectively. For the Soft Error Tolerant OASIS, the system requires re-
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Figure 4.8: Average packet latency evaluation of the synthetic benchmarks.

transmission via the ARQ mechanism and the re-execution for the soft error mechanism. There-

fore, the throughput is degraded due to the extra clock cycles. The proposed 3D-FETO, which is a

fusion of both hard fault and soft error tolerant mechanisms, inherits both degradations; however,

these systems provide the ability to handle up to a 33% error rate (the limitation of the soft error

mechanism).

4.6 Conclusion and Discussion

In this chapter, we proposed a fault tolerant 3D-Network-on-Chip (3D-NoC) system architec-

ture for highly-reliable many-core Systems-on-Chips (SoCs), named 3D-FETO. The proposed

system is based on two approaches. First, a comprehensive mechanism to handle both soft error

and hard faults in a 3D-NoC router is proposed. The hard fault support is achieved by leveraging

reconfigurable components to handle permanent faults in links, input buffers, and crossbars, while

soft error tolerance is obtained via efficient and light-weight software redundancy that enables fault
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Figure 4.9: Average packet latency evaluation of the realistic benchmarks.

recovery in the router pipeline stages. In the second approach, the system can support a detection,

diagnosis and recovery technique which makes it independent of any complex and costly testing

mechanisms commonly found in conventional systems.

Through extensive evaluation, we showed that the proposed 3D-FETO was able to recover ef-

ficiently from a significant number of soft and hard errors at different fault-rates, reaching up to

33%. This means that 3D-FETO can provide up to a 98% packet arrival rate even when almost

one-third of its components have failed. Despite the performance degradation and hardware com-

plexity penalty, we still consider that this overhead is acceptable. This is because we made sure that

the system is still functional at high fault rates where previously proposed systems fail to deliver

packets. As reliability constitutes one of the main challenges in future SoC design, we demon-

strated that the proposed 3D-FETO can be used as a reliable and independent system capable

of ensuring fault resiliency in worst case scenarios and that it can be adopted for mission critical

applications where correct data delivery is primordial.
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Figure 4.10: Throughput evaluation of the synthetic benchmarks.

Because this chapter has presented a complete soft error and hard fault tolerance, the fault

tolerance for Through-Silicon-Vias of 3D-ICs/3D-NoCs is needed to provide a sufficient fault-

tolerance method for 3D-NoC systems.
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5
Scalable TSV-Cluster Fault-Tolerance

I
n this chapter, the TSV-cluster defect tolerant architecture and algorithm are

presented. Because of the high defect rate and clustering distribution, TSV de-

fect tolerance has become a major issue for commercializing TSVs. The proposed

technique in this chapter was developed along with the work in the previous chapter, which al-

ready covers soft error and hard fault tolerance. As the final system, this chapter aims to provide a

complete work on tackling soft errors, hard faults and TSV defects.

The structure of this chapter is as follows. First, Section 5.1 declares the motivations and contri-

bution of this chapter. After that, 5.2 shows the proposed architecture with the fault assumptions.

Based on this architecture, the third section shows the algorithm and optimization. Next, Section

5.4 shows the evaluation results. The final section is for conclusions and discussion.
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5.1 Motivation and Contribution

As we mentioned in Chapter 3, there are two distributions for TSV defect: random and clus-

tering. The cluster defect is predicted to be frequently occurred. The most efficient solution for

correcting random defects is grouping and adding redundancy. However, they are still inefficient

for the cluster defect and possibly require costly extra area for redundancy. Because the random

TSV defect can be corrected by using Error Correcting Code (see Section. 4.3.1), the cluster defect

is the main interest of this dissertation.

On the other hand, several works [95, 96, 107, 108, 164] have been reporting the low utilization

of the vertical connection using TSVs in 3D-NoCs. The authors tried to reduce the number of

TSVs to minimize the area overhead while maintaining a low degradation in terms of performance.

Motivated by the cluster defect issue and the low utilization of the TSVs in 3D-NoC, we target a

better management for TSV fault-tolerance in 3D-NoCs.

In this work, we propose a scalable TSV utilization architecture and methodology to tackle

the lack of reliability in inter-layer links. To reduce the TSV-cluster defects, a router corrects its

defected TSV communication by choosing one of its four neighbor TSV-clusters located on the

same layer. To avoid timing violation issues, we place the TSVs of two nearby routers in between

them and a TSV-cluster is only shared between its two neighboring routers. Experimental results

show that the solution can help 3D-NoCs to work around TSV-cluster defects without the need

for redundancy. Therefore, reliability at reasonable overhead is guaranteed.

5.2 Proposed TSV Fault Tolerance Architecture

In order to handle the TSV-cluster defects in 3D-NoCs, our solution is to share TSVs between

neighboring routers. Therefore, when a TSV-cluster fails, its router can borrow a healthy cluster

from one of its neighbors to maintain the connection. Moreover, we also present several design

optimizations to improve the reliability of the system (Section 5.3.4).

5.2.1 Fault assumptions

Before we present the system structure, this subsection clarifies the fault assumptions taken in

this proposal. Because the cluster defect [30, 80, 81] is the major obstacle to be dealt with in this

work, we assume there are no random defects. Here, we consider an occurred fault makes the
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whole TSVs in the cluster to become defected. For those who might be concerned about random

defects, using redundancy [32, 82, 105, 106] can be easily integrated in our TSV-cluster design.

For controlling signals using TSVs, they are considered as a part of the TSV cluster instead of sep-

arated TSVs, which are better dealt with than random defects (e.g. [74] uses Double TSV [105]).

The detection process, which may need a Built-In-Self-Test module [165, 166], is assumed to be

existing and connected to the fault-tolerance module. To synchronize the configuration, the ex-

isting NoC infrastructure is used instead of adding TSVs. Therefore, no redundancy is required

in the proposed architecture.

5.2.2 System structure
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(1,0,0) (1,0,1) (1,0,2)
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TSV
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TSV 
Sharing

Area

Figure 5.1: Simplified block diagram illustrating the proposed system structure.

A simplified layout example of × ×  3D-NoC system using the proposed TSV usage is de-

picted in Fig. 5.1. For each vertical connection, a router needs a set of TSVs. Instead of grouping

all TSVs together, as shown in Fig. 2.11, they are divided into four groups. As a result, a router

owns four TSV-clusters and has a maximum of four nearby TSV-clusters. If a TSV-cluster of

a router is defected, the router can choose one of its four neighboring clusters as a replacement

without the need for redundancy. To satisfy the timing constraints, the router chooses the closest

TSV-cluster among its neighbor clusters. Taking into account further TSV-clusters is not consid-

ered in order to avoid long wires that are needed to establish the connection. By structuring the

TSVs into four clusters for each router, we can maintain the scalability of 3D-NoCs and avoid long

wire delay. We have to note here that there are some works that consider serialization to reduce
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the cost of TSVs in 3D-NoCs. In this work, we consider a normal vertical connection; however,

the proposed approach can be applied for the serialized TSV structure, as shown later.

Figure 5.2 shows the placement and connections of the TSV sharing area between R(1,1,1) and

R(1,0,1). Because each router has two ports (up and down) and two directions (in and out), the

number of TSV clusters is eight. Each TSV cluster handles a quarter of the vertical connection.

By using the tri-stage gates, the system can control which router has access to the TSV clusters.
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Figure 5.2: TSV sharing area placement and connectivity between two neighboring routers.

5.2.3 Sharing Circuit Design

To borrow a TSV-cluster from a neighbor, the router needs a supporting module. Figure 5.3

(a) shows the wrapper of a 3D-Router with the additional supporting modules that perform the

sharing algorithm, later explained in Section 5.3. There are two identical sharing modules (S-UP

and S-DOWN) for the two vertical up and down connections and each connection has two config-

uration registers (CR) for the input and output ports. As previously depicted in Fig. 5.1, R(1,1,1)

shares the TSV-clusters with its four neighbors: R(1,1,0), R(1,1,2), R(1,0,1), and R(1,2,1). Fig-

ure 5.3 (b) shows the sharing circuit for a TSV-cluster. The input of this TSV-cluster is shared be-

tween R(2,1,0) and R(2,1,1) on layer2. The output of this TSV-cluster is shared between R(1,1,1)

and R(1,1,0) on layer1. In the case where this TSV-cluster is defected, or borrowed, the data can

be sent by using one of the four neighboring clusters.

Based on the value of the 6-bit CR, shown in Table 5.1, the input and output ports can select
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Table 5.1: Configuration register (CR) description.

Value Description
000001 Original router connects to the cluster.
000010 Neighboring router connects to the cluster.
000100 Original router connects to the neighboring north TSV-cluster.
001000 Original router connects to the neighboring east TSV-cluster.
010000 Original router connects to the neighboring south TSV-cluster.
100000 Original router connects to the neighboring west TSV-cluster.

the data from: (1) its original TSV-cluster, (2) one of its four neighboring clusters or (3) being

disconnected. As shown in Figure 5.3 (b), the output data from R(2,1,1) can be sent to its TSV-

cluster if the least significant bit is ‘1’. By setting the least significant bit to ‘0’, the original TSV-

cluster is disconnected from it router. If the second bit is set as ‘1’, the neighboring router (R(2,1,0))

takes the access to this cluster. When the original TSV-cluster is defected or taken, the router needs

to take one of its neighbor’s clusters to maintain the connection based on the last 4-bit of CR. At

the receiving router (R(1,1,1)), a similar CR is used to establish the connection. The value of this

CR is identical to the sending router’s CR.

Because the CR only manages the connectivity, its value have to be set carefully to avoid the

possible conflict of TSV-cluster usage and to optimize the performance. To this aim, an adaptive

sharing algorithm is needed.

5.3 Adaptive Online Sharing Algorithm

In the previous section, we presented how a router can use its nearby TSV-clusters to maintain

the connection and the operation on a layer. The CR values need to be configured in order to

deal with the TSV defects. The simplest way for this process is to perform it offline and the

configuration fuses the TSV group [80]. However, fixing the connections has twomain drawbacks:

(1) recovering a newly defected TSV needs to halt the system and re-perform the mapping, and (2)

each application has a different distribution in the vertical connections and variations depending

on the running task which is not optimized by offline mappings. Consequently, we aim to perform

the mapping online so that the system can react immediately to the newly defected TSV-clusters

and can consider the connectivity of the 3D-NoC system. Thus, this subsection provides an online

algorithm for sharing TSVs which can be implemented onto the system.
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Algorithm 5.1: TSV Sharing Algorithm.
// Weight values of the current router and its N neighbors
Input: Weightcurrent,Weightneighbor[ : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent[ : N], TSV_Statusneighbor[ : N]
// Request to link TSV-clusters to neighbors
Output: RQ_link[ : N]
// Current router status
Output: Router_Status

1 foreach TSV_Statuscurrent[i] do
2 if TSV_Statuscurrent[i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_link[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor[c] < Weightcurrent
7 Weightneighbor[c] is minimal
8 and TSV_Statusneighbor[c] == “NORMAL”;
9 if (c==NULL) then

10 return RQ_link[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_link[i] = c
14 return Router_Status = “NORMAL”

Algorithm 5.1 shows the proposed algorithm for our sharing mechanism. Each router is as-

signed to a weight for each of the vertical connections. This weight decides its priority in shar-

ing/borrowing. The weight can be assigned at the design process or can be updated by a dedicated

module. Changing the weights of routers can create different mappings. At the initial stage, all

routers in the network exchange their weights and their TSV-clusters status with their neighbors.

In the next step, the algorithm performs the mapping process. If a TSV-cluster is defected, its cor-

responding router should find from its neighbors a possible candidate by relying on the following

conditions:

• The weight of the candidate has to be smaller than the current router.

• The candidate TSV-cluster has to be healthy and not borrowed.

• The weight of the final candidate is the smallest among all the possible candidates.

At the end of the algorithm, the router finds out the possible candidate for borrowing. If no

candidates are found, the router’s vertical connection is disabled. If there is a candidate, the router
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sends a request to the borrowing router to use its TSV-cluster as a replacement for the defected

one. The routers having borrowed TSV-clusters also look for a replacement among one of their

neighbors. By using a weighted system, the disabled TSV-clusters focus on smaller weight routers.

Figure 5.4 shows an example of how the sharing algorithm works on a  ×  layer with ten

defected TSV-clusters. Initially, the routers in the center, which are predefined to have higher TSV

utilization rates, have higher weights than those at the edges of the network, as depicted in Fig. 5.4

(a). The sharing algorithm selects the best candidates, shown in Fig. 5.4 (b), by following the

rules previously explained in Algorithm 5.1. Fig. 5.4 (c) shows that this selection must be further

refined by disabling the router having less than four functional (or not borrowed) TSV-clusters and

canceling their borrowing. The returning process is discussed in Section 5.3.2. Moreover, we also

observe the case in Fig. 5.4 (d) where two routers R(1,3,2) and R(1,3,3) are disabled; but, R(1,3,3)

can borrow a TSV cluster from R(1,3,2) to obtain full four TSV clusters. However, the borrowing

is prohibited due to the higher weight of router R(1,3,2). In order to optimize this case, we use a

technique named Weight adjustment, as explained in Section 5.3.3.

As shown in the above example, the chain of sharing leads to disabling the routers on the edges.

Instead of having ten defected TSV-clusters, the algorithm only disables six routers having the low-

est weights (40% of reduction). Consequently, maintaining the connections of the center routers,

which have higher weights and utilize more vertical communications, can reduce the impact of

TSV defects in terms of overall performance.

5.3.1 Weight Generation

One of the most important parameters in the sharing algorithm is the weight values of the

routers. The weights help the algorithm decide what router is suitable to be borrowed. As shown in

Fig. 5.4, the routers having smaller weights are disabled after the chains of sharing are established.

Because the weights decide the priority of the routers in the sharing process, they need to be

optimized to obtain a maximum system performance. In order to do that, the best solution is using

a statistic-based solution where the priority of the vertical connection depends on the communica-

tion traffic [167, 168]. In other words, the vertical connections having more data transmissions are

assigned higher weights; otherwise, smaller weights are assigned. Because application mapping is

out of the scope of this research, we adopt a simple method where the routers in the middle of

77



the layer have the highest weights. The router’s weights are decreased and become the lowest at

the edges of the layer. Equation 5.1 shows the used weight value assignment. The output of this

weight assignment on a layer of  ×  can be seen in Fig. 5.4 where, for instance, the weights of

routers R(1,0,0), R(1,1,0), and R(1,1,1) are 1, 2, and 3, respectively.

Weightrouter(x, y) = min(x, cols− x) + min(y, rows− y) +  (5.1)

5.3.2 TSV-clusters return

After a TSV-cluster is borrowed, it is managed by the borrowing router. However, if the bor-

rowing router is disabled later, this frees the borrowed cluster which has to be returned to its

original router. As a result, if the borrowed TSV cluster created a chain of borrowing, a chain of

returning is also created. This can be clearly seen in Fig. 5.4 (c) where R(1,3,1) has a faulty cluster

and has selected the east cluster of R(1,3,0) to be borrowed. However, in the next step, R(1,3,1) is

selected to borrow its north cluster to a higher weight router, R(1,2,1). Because R(1,3,1) is unable

to find any sharing TSV cluster to borrow, it is disabled and borrowing from R(1,3,0) is canceled.

Fig. 5.4 (d) represents the final results of the sharing process. In this final stage, R(1,3,0) is op-

erational again as it is no longer lending a cluster to R(1,3,1) which was disabled in the previous

phase.

After a TSV cluster is returned, its router check whether it created a borrowing chain and

release the borrowing. If there is no borrowing chain, which means the router failed to find a

replacement and is disabled, the sharing algorithm is performed again to check if the router can

return to normal. As shown in Fig. 5.4 (d), R(1,3,0) returns to normal after its TSV cluster (T(E))

is returned.

5.3.3 Weight adjustment

After applying the sharingmechanism, the disabledTSV-clusters are shifted to the regionwhich

consists of low weighted routers. Figure 5.5 (a) shows a case of three routers (R(1,0,0), R(1,0,1)

and R(1,0,2)) which are disabled after the sharing process. However, there are still a chance of

optimizing these routers to obtain a better mapping. In fact, R(1,0,2) can borrow a TSV-cluster

from R(1,0,1). Therefore, the number of TSV-clusters of R(1,0,2) can be maintained to four.
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Algorithm 5.2: Weight Adjustment Algorithm.
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent[ : N], TSV_Statusneighbor[ : N]
// Current and neighboring routers status
Input: Curr_Status,Neighbor_Status[ : N]
// Request to link TSV-clusters to neighbors
Output: Weightcurrent

1 CurrTSVs = ;
2 foreach TSV_Statuscurrent[i] do
3 if TSV_Statuscurrent[i] == “NORMAL′′ then
4 CurrTSVs ++;

5 NeighborTSVs = ;
6 foreach TSV_Statusneighbor[i] do
7 if TSV_Statusneighbor[i] == “NORMAL′′ and Neighbor_Status[i] == “DISABLED′′ then
8 NeighborTSVs ++;

// If there is at least 4 cluster, run the sharing algorithm
9 if NeighborTSVs + CurrTSVs >=  then

10 call TSV_Sharing()
11 else

// Reduce the current weight to allow the neighbors borrow
12 Weightcurrent = ;

To perform this optimization, the disabled router, after the sharing process by Algorithm 5.1,

is brought to a new process. First, the router counts the number of possible TSV-clusters that it

can borrow. Since three routers (R(1,0,0), R(1,0,1) and R(1,0,2)) are disabled, their TSV-clusters

are free to be taken. At the end of this stage, R(1,0,0), R(1,0,1) and R(1,0,2) have 1, 3, and 1

borrowed/defected TSV-clusters and are able to take 0, 1 and 1 TSV-cluster from their disabled

neighbors, respectively. At the second stage, the router checks whether it can take the disabled

router’s cluster to obtain a full connection. Because R(1,0,2) has one borrowed cluster and is

(a)

[R(1,0,0)]
Weight = 1
---------------
DISABLED

T(S)

T(N)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2
---------------
DISABLED

T(S)

T(N)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 2

T(S)

T(N)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T(N)

T
(E

)T
(W

)

[R(1,0,2)]
Weight = 1
---------------
DISABLED

T(S)

T(N)

T
(E

)T
(W

)

[R(1,1,2)]
Weight = 2

T(S)

T(N)

T
(E

)

T
(W

)

(b)

[R(1,0,0)]
Weight =  0
---------------
DISABLED

T(S)

T(N)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 0
---------------
DISABLED

T(S)

T(N)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 2

T(S)

T(N)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T(N)

T
(E

)T
(W

)

[R(1,0,2)]
Weight = 1

T(S)

T(N)

T
(E

)T
(W

)

[R(1,1,2)]
Weight = 2

T(S)

T(N)

T
(E

)

T
(W

)

Figure 5.5: Example of the weight adjustment performed to disable routers’ sharing: (a) Before weight
update; (b) After weight update.
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able to borrow another one from R(1,0,1), its weight is kept. The other routers (R(1,0,1) and

textitR(1,0,0) weights are reduced to zero. As a result, R(1,0,2) can borrow a TSV cluster from

R(1,0,1) despite the fact that it originally has a lower weight. The result is shown in Fig. 5.5

(b) where R(1,0,2) vertical connection is re-enabled. If the system wants to restart the sharing

mechanism, the weights of all routers need to be reinitialized.

Algorithm 5.2 shows the weight adjustment algorithm. It first calculates the total number of

healthy TSVs that are possible for using. If the total number of healthy TSV-clusters is larger

or equal than four, which is enough to maintain the vertical connection, the neighboring routers’

weights are reduced. After that, the TSV sharing algorithm (Algorithm 5.1) is performed, where

the router now can take TSV-clusters from the routers having higher weights, but being disabled.

5.3.4 Design optimization

Without adding redundancy, borrowing TSV-clusters to work around the defected ones makes

some routers to have less than four accessible clusters (e.g., R(1,0,0) in Fig. 5.4 (d)). As a result,

the communication of these routers have been disabled. To tackle this problem, the naive solution

is using a fault-tolerant routing algorithm to re-route the packets to a neighboring router. As we

mentioned in Chapter 3, this solution may lead to non-minimal routing and congestion in the

network. Therefore, we propose Virtual TSV to help these routers maintaining the connection

without using any fault-tolerant routing algorithm. In the case where the Virtual TSV is unable to

be performed, we also implement the Serialization technique which helps the vertical connection

establishing only one or two TSV-clusters.

Virtual TSV

When a router is not granted the access to four TSV-clusters, it is disabled. However, if the

number of nearby TSVs is larger or equal than four, which is enough for maintaining vertical

communication, they can be utilized to establish a connection. A possible connection, which

requires four TSV-clusters, may need clusters belonging to the neighboring routers. If these routers

do not use these clusters, the disabled router can borrow them for a short period to establish a

communication.

Figure 5.6 (a) shows an example of howVirtual TSV works whereR(1,0,1) has a defective cluster

(T(N)) and borrows a cluster from R(1,0,0). Because R(1,0,0) is unable to find any replacement
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Figure 5.6: Examples of Virtual TSV: (a) return the TSV-cluster to the original router; (b) borrow a cluster
from a higher weight router.

for the borrowed cluster (T(E)), it is disabled. When R(1,0,0) needs to establish an inter-layer

communication, it needs to find at least four TSV-clusters. Assuming that R(1,0,1) does not use

the borrowed cluster T(E), it is temporarily returned to R(1,0,0). When the packet is completely

transmitted, the borrowing cluster is taken back by the router R(1,0,1) again.

On the other hand, Fig. 5.6 (b) shows the case where a disabled router R(1,0,0) temporarily

borrows a TSV-cluster from a higher weight routerR(1,0,1) to establish an inter-layer connection.

For selecting a suitable candidate to temporarily borrow, Algorithm 5.1 is utilized.

Sel_R(1,0,1)_TSV

R(1,0,1)_req

R(1,0,0)_req

DATA_TSV

R(1,0,0)_DATA

R(1,0,1)_DATA packet_A packet_C

packet_B

packet_A packet_B packet_C

packet_D

packet_D

packet_E

packet_E

0 0 0 0

000

TSV_cluster_free

Figure 5.7: Example of Virtual TSV timing diagram.

To better understand Virtual TSVs, the timing diagram of the example previously presented in

Fig. 5.6(a) is depicted in Fig. 5.7. If two routers request and use the TSV in different time slots,

the request is granted to each of them to use the TSV-cluster separately. When they request at the

same time, R(1,0,1) is prior to operation due to its higher weight value.
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Because there is a case where R(1,0,1), which has the higher priority, occupies the TSV for a

long transmission time, R(1,0,0) is unable to access the TSV to establish a connection. Moreover,

at a high defect-rates, R(1,0,0) may not find any suitable candidate for virtual TSV. In order to

solve these issues, we adopt the Serialization [169] technique to maintain the connection.

Serialization Technique
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Figure 5.8: Circuit of 1:4 Serialization.

Although theVirtual TSV can help the disabled router maintaining its vertical connection, there

are still two situations where Virtual TSV cannot be performed: (a) there are less than four healthy

TSV-clusters, (b) the candidate TSV-cluster is occupied constantly by a higher priority router. In

order to solve these cases, we use the Serialization technique [169] to maintain the connectivity.

For the serialization, the router needs at least one TSV-cluster to maintain its connection. If

there is one available cluster, the 1:4 serialization is used, if there are two available clusters, the

1:2 serialization is established. The up and down directions’ output of the crossbar is stored in a

register and the serialization module transmits flits over the remained clusters. Figure 5.8 shows

the vertical interface between two routers using 1:4 serialization. Two serial counters handle the

connection by detecting the transmitting flit. This flit is also stored in a buffer in the transmitting

router. By increasing the counter’s value which selects the multiplexer, the output width is a quarter

of the flit size. Because only one TSV-cluster is utilized, the controller selects the output by using

a demultiplexer.
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At the receiving router, the input data is cached into a register. There are also a demultiplexer

and a multiplexer which are controlled by a serial configuration and a serial counter, respectively.

When the corresponding counter reaches “11”, the whole flit is transmitted to the buffer. For 1:2

serialization, the first half of each flit is cached and when the remainder arrivals (counter reach

“01”), the whole flit is sent to the buffer.

5.4 Evaluation Results

5.4.1 Evaluation Methodology

The proposed system was designed in Verilog-HDL, synthesized and prototyped with com-

mercial CAD tools. The hardware technology parameters are illustrated in Table 5.2. We use

NANGATE 45nm library [156] and NCSU FreePDK TSV[155]. The system configurations are

depicted in Table 5.3.

First, we evaluate the defect-rate by inserting faults (defects) into TSV-clusters and evaluate the

reliability of the proposed 3D-NoC system. Second, we use both synthetic and realistic traffic pat-

terns as benchmarks to study the performance of the proposed system in comparison to the baseline

model [149]. Third, we evaluate the hardware complexity of a single 3D router and compare our

system with other proposed approaches [80, 81].

Table 5.2: Technology parameters.

Parameter Value

Technology Nangate 45 nm [156]
FreePDK3D45 [155]

Voltage 1.1 V
TSV’s size .µm× .µm
TSV pitch 10 µm

Keep-out Zone 15 µm

Table 5.3: System configurations.

Parameter Value
# ports 7

Topology 3D Mesh
Routing Algorithm Look-ahead routing

Flow Control Stall-Go
Forwarding mechanism Wormhole

Input buffer 4
Flit width 44
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5.4.2 Defect-rate evaluation

In this section, we provide the impact of the different defect-rates. To demonstrate the scal-

ability of the proposed architecture, we set up several layer sizes:  × ,  × ,  × ,  × ,

× , and × . TSVs are grouped in clusters as presented in Section 5.2. We also vary the

TSV-cluster defect-rates: from 5% to 50%. Because our technique focuses on the cluster defect,

random defects are assumed to be dealt with typical redundancy methods. The position of cluster

defects are generated randomly and we perform the proposed algorithms with 100,000 different

samples and calculate the average results. We measure the ratio of four types routers in the layer:

Normal (healthy or corrected), Virtual (router with virtual TSV), Serial (router using serializa-

tion) and Disabled (disabled routers). We also compare the obtained results with “Normal w/o FT”

(Normal without Fault-Tolerance), where no fault-tolerant method is used and the router vertical

connection having defects is disabled.

As shown in Figure 5.9, the system mostly operates without disabling any vertical connections

with fault-rates under 50%. Thanks to the Virtual TSV and Serialization techniques, the routers

having less than four clusters are still able to work. Even at less than 20% of defect-rate, there

are less than 10% of serialization connections in all simulated layer sizes. With 50% of defect-rate

and a ×  layer size, the disabled router rate is negligible with about 1.565%. This can be easily

dealt using a light-weight fault-tolerant routing algorithm. When the layer size increases to be

larger than × , the number of disabled connections is mostly insubstantial. At 50% defect-rate,

the disabled router ratio is nearly 0.63%, 0.50%, 0.44% and 0.42% with  × ,  × ,  × ,

and  ×  layer sizes, respectively. However, these defect-rates are extremely high; thus, our

proposed mechanism can be considered as highly reliable.

In comparison to the system without fault-tolerant methods, there is a significant improvement

in terms of healthy connections, especially at large layer sizes. In Figure 5.9, the percentage of

routers having four healthy TSV-clusters is represented by the “Normal w/o FT” curve. At 50%

defect-rate, the average ratio of normal routers has been improved by 29.83%, 186.26%, 280.76%,

324.42%, 346.74%, and 257.79% for × , × , × , × , × , and ×  layer sizes,

respectively. The improvements are lesser with small layer sizes such as: ×  or × . However,

thanks to the Virtual TSV and Serialization, the workable connection rates have nearly reached
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100%.

In summary, this evaluation has shown a significant improvement in terms of reliability provided

by our proposed mechanism. Thanks to the efficiency of the proposed architecture and algorithm,

the system can mostly maintain all vertical connections, even at extremely high defect-rate (50%).

This evaluation also shows the proposed mechanism’s ability to remain efficiently scalable. The

proposal can be applied from a small layer size (e.g.,  × ) to a larger one (e.g.,  × ). The

evaluation is also performed with a solid number of tests (100,000) which strongly demonstrates

the efficiency of the proposed approach. There were some cases where some routers were disabled;

however, they can be recovered by simple and light-weight fault-tolerant routing algorithms.

5.4.3 Performance Evaluation

Table 5.4: Simulation configurations.

Parameter/System Value

Network Size (x× y× z)

Matrix × × 
Transpose × × 
Uniform × × 

Hotspot 10% × × 
H.264 × × 
VPOD × × 
MWD × × 
PIP × × 

Total Injected Packets

Matrix 1,080
Transpose 640
Uniform 8,192

Hotspot 10% 8,192
H264 8,400
VPOD 3,494
MWD 1,120
PIP 512

Packet’s Size
Hotspot 10% 10 flits+10%

on hostpot nodes
Others 10 flits

The previous section has proved the reliability of the proposed solution. In this section, we

evaluate the system performance under TSV-cluster defects. As we previously mentioned, works

in [107, 108] have demonstrated the low utilization rate of the vertical connections; neverthe-

less, the performance degradation in highly stressed networks has to be investigated. To evaluate

the performance of the proposed system and keep fair comparisons to the baseline, we adopted

both synthetic and realistic traffic patterns as benchmarks. We selected Transpose [161], Uniform
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[161], Matrix-multiplication [159], and Hotspot 10% [161] as the synthetic benchmarks. Within

these benchmarks, Uniform and Hotspot 10% have the highest stress on the network and both

Transpose and Matrix-multiplication use vertical connections for all of their connections. For re-

alistic benchmarks, we chose H.264 video encoding system [162], Video Object Plane Decoder

(VOPD), Picture In Picture (PIP) and Multiple Window Display (MWD) [163]. Moreover,

the network’s performance under TSV defects is the focus of these evaluations, the realistic and

synthetic benchmarks provide a vast diversity to study the impact of the fault-tolerance. The con-

figurations of these benchmarks are shown in Table 5.4. The packets are injected continuously

into the network. In other words, we executed the benchmarks until the saturation point of the

network is reached. In order to keep a fair comparison, only TSV defects are injected. This means

that the other fault-tolerance mechanisms [153] are disabled to not affect the performance.

Latency Evaluation

In this experiment, we evaluate the performance of the proposed architecture in terms of Av-

erage packet Latency (APL) over various benchmark programs and defect-rates. The simulation

results are shown in Fig. 5.10 (a). From this graph, we notice that with a 0% of defect-rate, the

system’s tolerance has similar performance in comparison to the baseline system.

When we increase the defect-rates in the proposed system, it has demonstrated additional im-

pacts on APL. At a 1% fault-rate using Matrix, Uniform, Transpose, and Hotspot 10% bench-

marks, the system increases the APL by 83.24%, 64.46%, 11.30% and 66,55%, respectively. These

high impacts are due to the occurrence of bottlenecks inside the network. Because all vertical

connections are utilized, Virtual TSV has caused congestions by sharing the TSV between two

routers. The serialization is already a bottleneck technique. These bottlenecks effects are even

higher at a 30% of defect-rate where the APL can be over 3 times that of the 0% case in the

synthetic benchmarks.

With H.264, PIP, MWD and VOPD benchmarks, the APL incrementation are significantly

reduced due to the low utilization of TSV. We can observe the identical performance of VOPD

benchmark from a 1% to a 30% defect-rates. With the PIP benchmark, the system under 1%

defect-rate has similar performance to 0% thank to the optimization process which disables the

unused clusters. With the MWD and H.264 benchmarks, the impact on APL is gradually in-
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creased when increasing the defect-rate. Even at a 30% of defect-rate, the APL values of MWD

and H.264 are increased by 129.91% and 60.04%, respectively. Because there is no optimized

routing technique for these benchmarks, the bottleneck effect is expected to happen.

Although there are significant impacts on latency, the system has proven to work without major

issues in all benchmarks.

Throughput Evaluation

Figure 5.10 (b) depicts the throughput evaluation with different benchmarks. At 0% defect-rate,

the proposed system’s throughput is similar to that of the baseline. When defects are injected into

the system, we can observe some degradation in throughput caused by the bottleneck effects on

the system. Similarly to APL, the throughput degradation in realistic traffic benchmarks (VOPD,

H.264, MWD and PIP) are significantly better than the synthetic ones. The system at a 20%

defect-rate provides a decreased throughput by 71.17%, 64.36%, 67.44% and 64.37% for Trans-

pose, Uniform, Matrix, and Hotspot 10%, respectively. At the same defect-rate, VOPD, MWD,

PIP and H.264 have 46.03%, 50.04% 28.17%, and 19.79% of throughput degradation. This lower

impact is caused by the low utilization of vertical connection rate and the optimization process.

The throughput of realistic benchmarks are naturally smaller than the synthetic ones because of

the specific tasks order of execution that was observed in the task graphs [162, 163].

Although there is a considerable degradation in the throughput evaluation, the system still

maintains over 0.1 flit/node/cycle in the highly stressed benchmarks, even at extremely high defect-

rates.

5.4.4 Router Hardware Complexity

Table 5.5: Hardware complexity of a single router.

Area Power Speed
Model (µm) (mW) (Mhz)

Static Dynamic Total
Baseline router [149] 18,873 5.1229 0.9429 6.0658 925.28

Proposal

Router 29,780 10.017 2.2574 12.3144 613.50
Serialization 3,318 0.9877 0.2807 1.2684 -
TSV Sharing 5,740 0.7863 0.2892 1.0300 -
Total 38,838 11.7910 2.8273 14.6128 537.63
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Table 5.5 illustrates the hardware complexity results of the proposed router in terms of area,

power (static, dynamic, and total), and speed. In comparison to the router in which we implement

the proposed techniques, the area and power consumption have increased by 30.42% and 18.66%,

respectively. The maximum speed has also slightly decreased by 12.37%. In comparison to the

baseline model, the proposed system almost doubles the area cost and power consumption while

decreasing the maximum frequency by about 50%. However, the TSV sharing and Serialization

modules incur reasonable area and power consumption overheads which are 47.99% and 38.89% in

comparison to the baseline router, respectively. Here, the TSV Sharingmodule handles the sharing

algorithm and the Virtual TSV process and the Serialization module helps the router communicate

in Serialization mode.
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Figure 5.11: Single layer layout illustrating the TSV sharing areas (red boxes). The layout size is µm ×
µm.

The layout of a layer is shown in Fig. 5.11 where the sharing TSV areas are depicted by the red

boxes. As shown in Section 5.2.2, the TSV sharing area consists of eight clusters. For each port,

R(1,1,1) can access T(E) of R(1,1,0) and R(1,1,0) can access T(W) of R(1,1,1). By placing the

shared cluster areas between two routers, we can ensure a small extra wire delay for rerouting.

5.4.5 Comparison

In order to understand the efficiency of the proposed approach, we compare it with existing

solutions as shown in Table 5.6. Here, we analyze our proposal with a network size of × × .
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Because the router and its TSV clusters structure are identical, similar results can be obtained with

the others network sizes. TSV Grouping [81] optimized the configuration of redundancy to deal

with TSV-cluster defects. TSV Network [80] established TSVs into networks which allow routing

from defected TSVs to redundant ones. We select the best results on these two works [80, 81]

for the comparison. From this table, we can see that the average area of our proposal is .µm

per TSV and, for a TSV size of µm × µm, the area overhead is about 51.47%. The TSV

Network [80] has similar value for 4:2 configuration (4 original TSVs and 2 redundant TSVs).

With 8:4 configuration, TSV Grouping also obtained an average area of .µm.

On the other hand, the other configurations obtained lower area overheads. Nevertheless, we

have to note that our arbiter not only consists of the rerouting circuit (similar to the multiplexers

in TSV Network and TSV Grouping); but, also includes an online adaptive algorithm designed in

hardware, in addition to the Virtual TSV and Serialization techniques. Both TSV Grouping and

TSV Network have to require additional dedicated circuitry to recover from the cluster defects.

In terms of reliability, the proposed approach has proven its high resiliency, as previously shown

in Section 5.4.2. TSV Grouping demonstrated a 100% of yield rate under a defect-rate of 1% and

TSVNetwork obtained nearly 100% in themost cases. However, their approaches are different than

our scheme, where they add redundancy to correct the defect TSVs. As a result, if the number of

defected TSVs is larger than the number of redundant ones, they are unable to recover from the

defected clusters. On the other hand, our technique can significantly improve the reliability by

providing 98.11% of workable routers at 50% of defected TSV-clusters. Moreover, at low defect

rates (e.g. under 5%), our proposal also ensures 100% of working connection and demonstrates

small performance degradations in the realistic traffic pattern benchmarks. Even with disabled

vertical connections, the reliability of our system can also be improved (i.e., covering the remaining

1.89%) by using a lightweight fault-tolerant routing which would have a negligible impact on the

area overhead.
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5.5 Conclusion and Discussion

This chapter presented an adaptive and scalable sharing methodology for TSVs in 3D-NoC

systems to deal with the TSV-cluster defects. The results have proven the system ability to pro-

vide high reliability that can reach up to 346.74% increase in functional routers. Moreover, the

proposed approach can correctly work with a reasonable degradation, even under a 30% of defect-

rate. The hardware complexity has shown a small overhead in terms of area cost (30.42%), power

consumption (18.66%) and maximum frequency (12.37%) of router’s logic. Since no TSV redun-

dancy is required in the proposed architecture and algorithm, we show that it is possible to provide

a highly reliable system while maintaining the overhead reasonable.

The final architecture has integrated the soft error, hard fault and TSV defect tolerance mech-

anisms. However, there are also numerous existing works on fault-tolerance. Depending on the

requirements, designers can decide to use a suitable technique or propose a better one. During the

development process, we observe the difficulty in evaluating the efficiency of the proposed system,

especially in terms of reliability. Therefore, we needed to develop a platform to help assessing NoC

systems. Consequently, the next chapter presents the proposed reliability assessment.
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6
Reliability Assessment for 3D-NoCs

F
ault tolerance architectures and algorithms have been broadly developed in nu-

merous areas, especially with the increasing of device’s vulnerability. Depending on

the trade-off between performance, overheads and fault-tolerance capacity, design-

ers have to consider different techniques. To understand the reliability of the system, even before

completing the design, assessment is one of the most common methods. Even after completing

the design, manufacturing and testing are still costly which drives the need for reliability analyses.

However, from the state-of-the-art, reliability assessment for NoC systems is still immature which

needs to be properly investigated.

In this chapter, we present an analytical assessment to evaluate fault-tolerant NoC architectures

as a part of Design for Reliability (in the preliminary design stage). Instead of building a complex

analysis, we aim to provide a simple and effective method to address the reliability of NoCs. The
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proposed method can work in conjunction with other reliability analyses, such as physical level

analysis, simulation evaluation, and system level analysis. We build a strategy to help analyze a

complex network-based system in separated parts and merge them all together. This proposal can

be applied from the design definition phase, through preliminary design and up to the detailed

design phase. Besides of the analytical assessment, we also introduce the Monte-Carlo MTTF

simulation which helps designers evaluate the reliability of their systems.

The rest of the chapter is organized as follows: Section 6.1 classifies the fault-tolerance concept.

In Section 6.2, we overview the Markov-state model in addition to the main assumptions and

definitions needed for the proposed method. In Section 6.3, we present our reliability assessment

methodology. The MTTF Monte-Carlo simulation is presented in Section 6.4. In Section 6.5,

we provide the evaluation results. The last section is dedicated for conclusions and discussion.

6.1 Fault-tolerant Classification
FT METHOD - 1

Original Spare

Check &

Recovery

Original Spare

Majority

Voting

Spare

(a) (b)

Figure 6.1: Redundancy fault-tolerant models: (a) Check and recovery; (b) Majority voting.

In [41], the fault-tolerance models and techniques for NoCs are surveyed and organized. Here-

after, we briefly summarize them and categorize them into two basic approaches:

(1) Redundancy: consists of temporal or spatial redundancy to handle the faults, as shown in

Fig. 6.1.

(2) Self-reconfiguration: as represented in Fig. 6.2, the fault-tolerance adapts to the occurrence

of faults to alleviate their impact.

The redundancy technique can use a replica of a given module as a back-up when the original

system fails, as shown in Fig. 6.1(a). It also can use multiple replicates run in parallel which can
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Figure 6.2: Self-configuration fault-tolerant models.

be activated on the fly, as depicted in Fig. 6.1 (b). The self-configuration method re-optimizes the

system to ensure the system’s function. As represented in Fig. 6.2, if a module fails, its task can

be migrated and shared with other healthy modules. Thus, the system can maintain its correct

functionality. The redundancy and self-configuration method can be applied in whether software

(redundant execution, checkpoint) or hardware (majority voting, redundancies) approach.

Along with the recovery methods, one of the important criteria of fault-tolerance is error de-

tection. Depending on the reliability requirements, NoC systems can use an online [44, 100, 117]

or an offline [118, 126] error detection method.

6.2 Markov-state Model and Assessment Definitions

This section presents the basic concepts, definitions and assumptions used in the proposed an-

alytical assessment methodology used to approximate and evaluate the reliability of fault-tolerant

Network-on-Chip systems. Specifically, we adopt the Markov-state model to analyze the relia-

bility of the fault-tolerance mechanisms. Therefore, we firstly start by giving an overview of the

Markov-state model followed by the different assumptions and models adopted in the proposed

assessment method.

6.2.1 Markov State model overview

A system operating with faults can be converted into a Markov state model [134, 170, 171] as

shown in Fig. 6.3. Each state Si of the Markov model represents a possible status (event, configu-
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ration, behavior) of the system. A status can be a case where one or multiple elements of the system

fail. If the system’s operation in state Si is maintained correctly, we define Si as “healthy”. If the

system is unable to operate correctly in this state, we define it as “faulty”.

The reliability of a system can be defined as a time-dependent probability function R(t) in the

time domain (R∗(s) in Laplace domain) and can be evaluated using the Mean Time To Failure

(MTTF) [134] calculation as follows:

MTTF =

∫ ∞

t=
R(t) = lim

s→
(R∗(s)) (6.1)

We assume that the system’s status is converted to a set named S with m states: S...Sm−. We

use S to represent the initial state of the system. The set of healthy states and the set of faulty states

are defined, respectively, as follows:

H , {Si ∈ S|the system works correctly} (6.2)

and

F , {Si ∈ S|the system not working} (6.3)

Faulty StatesHealthy States

Figure 6.3: A Markov-state reliability model for an m states system with n non-faulty states.

Fig. 6.3 shows each state Si of S. A transition between two states has a specific rate which is

defined as follows:
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• λ is the fault rate of a component in the system. It can represent a transition from an

element of set H to an element of set F.

• µ is the repair rate of a component in the system. It can represent a transition from an

element of set F to an element of set H.

The reliability of a system can be obtained by summarizing the probabilities of its states and

the reliability function. Given a state Si, which has j input transitions (σ) from j states Sn,i

(n = , , ..., j) and k output transitions (γ) to k states Sm,i (m = , , ..., k), the derivative of

the probability of the state in the time domain is given as follows:

p′Si(t) = −
j∑

n=
σnpSn,i +

k∑
m=

γmpSm,i (6.4)

Note that with each input or output transition, based the set of the state, the transition rates

(σ and γ) can be either a failure (λ) or repair (µ) transition. By converting Eq. 6.4 to the Laplace

domain [134], we obtain the below equation:

sPSi(s)− pSi() = −
j∑

n=
σnPSn,i +

k∑
m=

γmPSm,i (6.5)

When applying the above for all states, we obtain m equations of (PS ,PS , ...,PSm−) and the

reliability function R∗(s) can be defined as the sum of probabilities of being in healthy states:

R∗(s) = P(H) =
∑
Si∈H

P(Si) (6.6)

Finally, to obtain the MTTF value, Eq. 6.1 can be used.

6.2.2 Assumptions

In a fault-tolerant system, the fault-tolerant method has to improve the reliability of the sys-

tem. As a result, the MTTF value has to be also increased. Therefore, we propose the Reliability

Acceleration Factor (RAF) to denote the efficiency of fault tolerance, represented as:

RAF =
λoriginal

λFT
=

MTTFFT
MTTForiginal

≥  (6.7)

Where:
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• MTTForiginal is the Mean Time To Failure of the original system.

• MTTFFT is the Mean Time To Failure of the fault-tolerant system.

• λ is the fault rate and it is the inverse value of MTTF.

The transitions have dedicated “steady-state” rates which need to be predefined [134]. Therefore,

we make the following assumptions regarding a given system failure.

• The system starts with a default state where all components are in the healthy state. In

Fig. 6.3, the initial status is: pS() =  and pSi() =  with i ̸= .

• The failure rates are constant.

Since the fault-rate depends on the technology parameters, running environment and oper-

ating circumstances which are not easy to obtain in the early analysis. Therefore, we assume the

“raw” fault-rate (i.e., original fault-rate with no fault-tolerance support) according to the following

assumptions:

• The fault-rate has a linear relationship with the area cost of the module.

• The fault-rate has a linear relationship with the operating time of the module.

• The fault-rate is affected after a module is attached to a system.

Thus, for a system with k components, its fault rate is given by:

λsystem =


MTTFsystem
=

k∑
i=

fiπiλunit (6.8)

where unit is a selectedmodule as a reference for calculation. πi is the fault-rate ratio between the

component and the unit. It can be defined as the area cost ratio and operating time ratio [109, 139].

fi is the fault-rate ratio after attaching the component to the system (f = /RAF). The fault rate

can be reduced (fi < ) by applying fault-tolerance; otherwise, it remains as fi = .

In a typical fault-tolerant system, a faulty part can be repaired with a specific repair rate (µ) after

being detected. This rate is given by the module managing the fault-tolerance mechanism.
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Figure 6.4: Classified Model: (a) Model 1 - Spare, (b) Model 3 - Error handling.

6.2.3 Classified Model

We categorize fault-tolerance architectures [41, 139, 172] into four basic models where each

model is treated separately and differently: Non-fault tolerant model, Spare model, Fault-reduced

model, and Error handling model as:

• Model 0 - Non-fault tolerant model : This model is applied for the module without fault-

tolerance capabilities. Its fault-rate can be obtained by Equation 6.8 or based on physical-

level analysis.

• Model 1 - Spare model : As represented in Fig. 6.4 (a), we assume the considered module

has m separated identical parts which can function with at least n parts. In the redundancy

method, an r extra spare parts are added in the design stage. The Self-configuration (previ-

ously presented in Section 6.1) can be modeled without extra parts. In fact, it has n < m

and allows the system to fail at most (m− n) submodules.

• Model 2 - Fault-reduced model : This model is aimed for fault-reduced systems. The reducing

of fault-rate can be given by a special technique (e.g., error correcting code [65]). This

model can help applying the other former analyses (physical-level or system-level) to the

new system.

• Model 3 - Error handling model : As shown in Fig. 6.4 (b), this model is designed for error

detection and management modules. The detection module also adds a new rate to the

overall system. The fault-rate of the original module can be reduced by using Model 1 or

Model 2.
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6.3 Quantitative Reliability Assessment

Dividing:

1. A Network-on-Chip consists of NR routers.

2. A router is divided into several modules: M,M, ...,Ma.

3. Each module can be modeled as one of the predefined models (Model 0-3).

Conquering:

1. For each module Mi = M,M, ...,Ma of a router, analyze it using one of the given strategies:

• If the module Mi is not fault tolerant (Model 0), it is given reliability values by Eq. 6.8.
• If the module Mi is a spare model or a reconfigurable module (Model 1), it is given a

failure rate by Strategy 1.
• If themoduleMi is reduced failure by applying a special technique (Model 2), use Strategy
2.

• If the module Mi is a typical fault-tolerant module (Model 3), after applying Strategy 1
or 2 its final failure rate is given by calculation in Strategy 3.

Merging:

1. A router reliability is obtained by Router Merging.

2. A network reliability is obtained by Network Merging.

Figure 6.5: Reliability Assessments for Fault-Tolerant Network-on-Chip.

In this section we present a detailed explanation on how to evaluate the reliability of the different

components that can constitute a fault-tolerant NoC system. Figure 6.5 shows the three main

steps that are necessary to obtain a comprehensive reliability assessment: A network is divided

into routers which are also divided into modules (Dividing). After dividing, the modules are

analyzed and classified according to their appropriate model, and the suitable strategy is applied

(Conquering). The final reliability is obtained by merging all modules together (Merging).

6.3.1 Conquering

We consider the components of a router by using the bellow strategies which are applied to each

one of the four basic models presented in the previous section.

Strategy 0

Applied for Model 0 - Non-fault tolerant model where if the module is not fault-tolerant, its

failure rate is simply estimated using Eq. 6.8.
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Strategy 1

Applied for Model 1 - Spare model. This strategy handles hard faults using spare modules or by

reconfiguring an alternative part.

We assume that the considered module has m separate identical parts and can function with at

least n parts. In order to enhance the reliability, an extra r spare parts are added in the design stage.

f is the number of parts that are faulty in a state. Equation 6.2 can be then reformulated as:

H , {Si ∈ S|m+ r− f ≥ n} (6.9)

The Markov state model can be built as shown in Fig. 6.6. Each state is labeled with the number

of healthy parts and the failure-rate is indicated by Eq. 6.8.

𝜆𝑚+𝑟−1Δ𝑡 𝜆𝑚+𝑟−2Δ𝑡 𝜆𝑛Δ𝑡

Healthy States Faulty State

𝜆𝑚+𝑟Δ𝑡 𝜆𝑚+𝑟−1Δ𝑡 𝜆𝑛Δ𝑡

Healthy States Faulty State

Figure 6.6: A Markov-state reliability model for spare modules.

The original system consists of m parts, and its MTTF can be expressed as:

MTTForiginal =

m


λsingle−part

(6.10)

By applying Eq. 6.1 based on the probability of healthy states, the MTTF can be expressed as:

MTTFFT = Σm+r
i=n


λi

=


λsingle−part
(Σm−

i=n

i +


m +Σm+r

i=m+

i ) (6.11)

Lemma 1: The RAF values can be calculated as follows:

RAFconv. =
MTTFFT

MTTForiginal
= Σm+r

i=n
m
i =  +Σm−

i=n
m
i +Σm+r

i=m+
m
i (6.12)

Proof 1: We consider a system originally having m identical parts, r extra parts and requires at

least n parts for maintaining its function. The derivatives of probabilities of each states in time
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domain are calculated as follows:

p′m+r = −λm+rpm+r (6.13)

p′m+r− = λm+rpm+r − λm+r−pm+r− (6.14)

p′m+r− = λm+r−pm+r− − λm+r−pm+r− (6.15)

... (6.16)

p′n = λn+pn+ − λnpn (6.17)

p′n− = λnpn − λn−pn− (6.18)

By converting to Laplace domain, the probabilities of states are expressed as:

sPm+r − pm+r() = −λm+rPm+r (6.19)

sPm+r− − pm+r−() = λm+rPm+r − λm+r−Pm+r− (6.20)

sPm+r− − pm+r−() = λm+r−Pm+r− − λm+r−Pm+r− (6.21)

... (6.22)

sPn − pn() = λn+Pn+ − λnPn (6.23)

sPn− − pn−() = λnPn − λn−Pn− (6.24)

By resolving the above equations, the final probabilities in Laplace domain are:
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Pm+r =


s+ λm+r
(6.25)

Pm+r− =
λm+rPm+r
s+ λm+r−

=
λm+r

(s+ λm+r)(s+ λm+r−)
(6.26)

Pm+r− =
λm+r−Pm+r−
s+ λm+r−

=
λm+rλm+r−

(s+ λm+r)(s+ λm+r−)(s+ λm+r−)
(6.27)

... (6.28)

Pn =
λn+Pn+
s+ λn

=
λm+r...λn+

(s+ λm+r)(s+ λm+r−)...(s+ λn)
(6.29)

Pn− =
λnPn

s+ λn−
=

λm+r...λn+λn
(s+ λm+r)(s+ λm+r−)...(s+ λn)(s+ λn−)

(6.30)

The reliability of the system is given by the healthy states as follows:

R∗(s) = P(H) = Σm+r
i=n Pi (6.31)

MTTFFT = lim
s→

(R∗(s)) = lim
s→

Σm+r
i=n Pi (6.32)

MTTFFT = Σm+r
i=n


λi

=


λsingle−part
Σm+r
i=n


i (6.33)

=


λsingle−part
(Σm−

i=n

i +


m +Σm+r

i=m+

i ) (6.34)

Finally, RAF can be calculated, using Eq. 6.10 and Eq. 6.31, as follows:

RAFFT =
MTTFFT

MTTForiginal
=  +

Σm−
i=n


i +Σm+r

i=m+

i


m

(6.35)

When simplifying Eq. 6.35, Lemma 1 can be obtained. The enhancement of reliability is ob-

tained thanks to the additional extra parts (r) and the reduction of the minimal required part (n).

Strategy 2

This strategy is designed for Model 2 - Fault-reduced model. In this case, the efficiency can be

predicted from other analyses or probability calculations. With a fault reduction value fFT given

by the technique, the new fault rate is obtained by Eq. 6.36
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λFT = fFTλoriginal (6.36)

Where fFT is the inverse value of RAF:

fFT =


RAF =
λFT

λoriginal
(6.37)

This strategy is proposed to help designers integrate existing analyses into our method. For

instance, the fFT can be obtained from a physical level analysis, a simulation, another analytical

model or even from the FAIT stage. By dividing the fault-rate (or MTTF) of design before and

after applying the fault-tolerance methods, designers can obtain the reduction rate and integrate

the fault-reduced module to the system.

Strategy 3

This strategy is applied to Model 3 - Error handling model. As previously mentioned, in prior

strategies we demonstrate the efficiency of the fault-tolerance techniques using analytical mod-

els [143]. Because fault-tolerance requires additional modules for checking and correcting faults.

These additional modules also add extra fault-rates.

We model both original and fault-tolerant systems to have two Markov states as represented in

Fig. 6.7 (a) and Fig. 6.7 (b), respectively, where:

• S is the initial state.

• SF is the faulty state of the original system.

• S is the faulty state of the original system which can be corrected by the fault-tolerant

technique.

• S is the faulty state of the original system which cannot be corrected by the fault-tolerant

technique.

• SC−F is the faulty state of the repair module.

Because of the protection from the fault-tolerant technique, the FT system can handle some

faults. Therefore, we define the transition rates as:
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Figure 6.7: A simplified Markov-state reliability model for (a) the original system; (b) the fault-tolerant
(FT) system.

• λD is the fault-rate of the original system (D).

• λC is the fault-rate of the repair module of the FT system.

• µD is the repair-rate which is provided by the repair module (C) on the original system (D).

• fD is the fault reducing value by applying the fault-tolerance mechanism.

Based on the Markov state of the two systems, as shown in Fig. 6.7, the reliability function is

givens as:

R∗(s) = PS (6.38)

The final fault-rate of the fault-tolerance system is as follows:

λFT = fDλD + λC (6.39)

Lemma 2: The RAF value can be then expressed as:

RAFFT = fD +
λC
λD

(6.40)
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Proof 2: We have the derivations of the states as the following:

p′S = −(λC + (− fD + fD)λD)pS + µDpS (6.41)

p′S = −µDpS + (− fD)λDpS (6.42)

p′C−F = (λC)pS (6.43)

p′S = (fDλD)pS (6.44)

(6.45)

And their Laplace transforms can be expressed as:

sPS − pS() = −(λC + λD)PS + µDPS (6.46)

sPS − pS() = −µDPS + (− fD)λDPS (6.47)

sPC−F − pC−F() = (λC)PS (6.48)

sPS − pS() = (fDλD)PS (6.49)

(6.50)

sPS −  = −(λC + λD)PS + µDPS (6.51)

sPS −  = −µDPS + (− fD)λDPS (6.52)

sPC−F −  = (λC)PS (6.53)

sPS −  = (fDλD)PS (6.54)

(6.55)
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sPS + (λC + λD)PS =  + µDPS (6.56)

sPS + µDPS = (− fD)λDPS (6.57)

sPC−F = (λC)PS (6.58)

sPS = (fDλD)PS (6.59)

(6.60)

PS =
 + µDPS

s+ (λC + λD)
(6.61)

PS =
(− fD)λDPS

s+ µD
(6.62)

PC−F =
λC
s PS (6.63)

PS =
fDλD
s PS (6.64)

(6.65)

PS =

 + µD
(− fD)λDPS

s+ µD
s+ (λC + λD)

(6.66)

PS(−
µD(− fD)λD

(s+ λC + λD)(s+ µD)
) =


s+ λC + λD

(6.67)

PS((s+ λC + λD)(s+ µD)− µD(− fD)λD) = (s+ µD) (6.68)

PS =
s+ µD

s + (λC + λD + µD)s+ µD(λC + fDλD)

(6.69)
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PS =
s+ µD

s + (λC + λD + µD)s+ µD(λC + fDλD)
(6.70)

PS =
(− fD)λD

s + (λC + λD + µD)s+ µD(λC + fDλD)
(6.71)

PC−F =
λC(s+ µD)

s + (s(λC + λD + µD)s+ µD(λC + fDλD))
(6.72)

PS =
fDλD(s+ µD)

s(s + (λC + λD + µD)s+ µD(λC + fDλD))
(6.73)

The MTTF of the final system is given by the healthy state S0:

MTTFFT = lim
s→

(R∗(s)) = lim
s→

PS (6.74)

MTTFFT =


(λC + fDλD)
(6.75)

(6.76)

Because the MTTF value of the original system is /λD, the RAF of this model is given as:

RAFFT =
MTTFFT

MTTForiginal
=

λC + fDλD
λD

= fD +
λC
λD

(6.77)

When simplifying the above equation, Lemma 2 can be obtained.

Discussion: The repair does not impact too much into the system’s reliability. In fact, it gives a

high impact on the availability of the system. The availability function is given as follows:

AFT(s) =
Eup−time

Eup−time + Edown−time
=

PS
PS + PS

=
s+ µD

s+ µD + (− fD)λD

= − (− fD)λD
s+ µD + (− fD)λD

AFT = lim
s→

AFT(s) =
µD

µD + (− fD)λD

(6.78)
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6.3.2 Merging

After analyzing all modules, the system reliability is calculated based on its sub-modules. There-

fore, we start first by merging the router components and then merge all the network components

to obtain the entire system reliability.

Router merging

We first determine the router is reliable only if it is able to transmit correctly a given data from

any input to any output port. By applying equation 6.8, the fault rate of a router is obtained as

follows:

λ∗
router =

N∑
i=

fMiλMi (6.79)

Where λMi is the fault-rate of module Mi and fMi is the fault reduction rate given by attaching

this module to the system. By applying Eq. 6.8 with unit, which is defined as a baseline router,

the new failure-rate of a router is given as follows:

λ∗
router =

N∑
i=

fMiπMiλrouter (6.80)

The RAF value also can be obtained by the following equation:

RAFrouter =
λ∗
router

λrouter
=

N∑
i=

fMiπMi (6.81)

Network merging

The next step is to evaluate the network reliability. Unlike the router, the network has a high

flexibility in the routing process. For example, if a link along the path between two distant routers

is faulty, the network can avoid it in the routing path.

Among several existing network’s reliability terminologies [134], this work uses “all-terminal

reliability” for the analysis. “All-terminal reliability” is defined as all PEs are connected to the

network. In other words, all PEs have the ability to communicate with any PE in the network.
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Faulty States

Figure 6.8: A Markov state of a mesh-based network.

According to [134, 137], the most common method is using Node-based reliability. Unlike com-

puter or transportation network, NoCs have a small granularity in terms of fault occurrence and

handling (FIFO, wires, logic circuit). Therefore, a low-level approach is more suitable. In this

assessment, we analyze the network reliability in terms of connection between two routers, or a

pair of router and PE.

To analyze the network’s reliability, we analyze the possible failure cases that may corrupt the

system. We define the major failure cases as follows:

• Failure on local connection: a failure on the connections, which are handled byNIs, between

routers and PEs can corrupt the network’s reliability. This involves two channels (input and

output) and an input buffer which is constantly attached to its input channel.

• Failure on transmitting path: a failure on the transmitting path can corrupt the network’s

reliability. The transmitting path is considered as a set of connections between routers.

• Failed on other router modules: A failure in non-transmitting parts (e.g., switch allocator,

management modules) of a router may malfunction the router.

From the failure cases, a Markov state model is built as shown in Fig. 6.8. As a result, the fault
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rate of a network of NR routers is given as follows:

λnetwork = λlocal + λtransmitting−path + λothers (6.82)

Where:

• λlocal = NR × (λ−channel + λinput−buffer) is the fault-rate of all local connections. NR is the

number of routers in the network.

• λtransmitting−path is the fault-rate of a transmitting paths between routers inside the network.

Designers can estimate this value based on analytical analysis or simulation model proposed

in [134][137][43][173]. In here, we apply k-failure [173] model to assess the reliability.

• λothers is given by the fault-rates of other parts (non-routing parts) of routers.

In this work, we consider λtransmitting−path = λRTR × NR. λRTR is the fault-rate of a router-

to-router (RTR) connection which represents one node connection from a router to any adjacent

router. The RTR connection failure rate depends on the position of the router in the network.

Here, we use the k-failure [173] model: a router is disconnected at the presence of k failures. We

adopted this model with amodification: the failure value k is defined as a connection and it depends

on the router’s position. For example, the corners, the edges, the side and the middles of the 3D

Mesh NoCs have three, four, five and six routing selections, respectively. This condition is the

maximum value that fault-tolerant routing algorithms can achieve. With the fault assumption in

Eq. 6.8, the routers located at a similar position (corner, edge, side or middle) have a similar fault

rate. The failure rate of RTR connection is expressed as follows:

λRTR = Pcorner × λcorner + Pedge × λedge + Pside × λside + Pmiddle × λmiddle (6.83)

Where the failure rates: λcorner, λedge, λside, and λmiddle are obtained from the fault-rate of a

connection. Pcorner, Pedge, Pside and Pmiddle are the probability of having a router in corner, edge,

side and middle of the network, respectively. A connection is defined as a data path from input

buffer to the next input buffer or NI’s buffer. As shown in Figure 2.12, a connection consists of an

input-buffer, a crossbar link, an inter-router channel. Because these components are independent,
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the fault-rate of a connection (λconn.) is defined as follows:

λconn. = λ−input−buffer + λ−crossbar−link + λ−router−channel (6.84)

In order to compute λRTR, the fault rate of each position in Eq. 6.83 can be calculated by using

Eq. 6.11 of Strategy 1 as follows:

λposition =


MTTFposition
=


Σm+r
i=n


λconn.

(6.85)

Where the identical part is a connection (its fault-rate is λconn.), r=0, n=1, and m= 3, 4, 5 and 6

for the corner, edge, side, and middle, respectively. The non-fault tolerant routing fault-rate (from

MTTF) can be calculated using Eq. 6.10.

In the case where the routers in a network have different fault-rates, and despite having the same

architecture, we need to manually calculate each router’s λRTR(i = , , ...,NR). The fault-rate of

a transmitting path is obtained by the following equation:

λtransmitting−path =

NR∑
i=

λRTR(i) (6.86)

Where λRTR(i) is the fault-rate of router-to-router connection from router i of the network.

6.4 MTTF Monte-Carlo Simulation

Figure 6.9 shows the Mean Time To Failure (MTTF) Monte-Carlo setting up flow [153]. The

goal of this simulation is to measure the MTTF value of the system. The flow of this simulation

consists of the following:

• The NoC architecture is designed in Verilog HDL and synthesized using Synopsys Design

Compiler to obtain a post-synthesis netlist model.

• A fault distribution system is automatically integrated inside theNoC netlist model by using

Python’s Regular Expression scripts [174]. The faults are modeled in stuck at “0” and “1”.

Our method is similar to the fault injection methods in [102, 133].

• The post error injection netlist model is used to simulate and find the number of faults
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Figure 6.9: Monte-Carlo setting up flow.

leading to failure.

• The number of faults is recorded for further processing.

The error injector architectures are shown in Figure 6.10 with two models: normal gate and

flip-flop gate. When the error injector is enabled (by setting up C = ), it forces the output of its

attached gate to “0” or “1”. If the error injector is disabled, the correct output is forwarded.

The simulation process is depicted in Figure 6.11:

• At the first iteration, the injected position is generated and the corresponding position is

distributed with a fault.

• Hard faults are injected until finishing the experiment. Soft errors disappear after one clock

cycle.

• A testbench is designed to verify the system correctness after injecting a fault (100% of the

PEs are connected and 100% of the packets are correctly delivered). If the system is still

functioning correctly after a fault is injected, the simulation injects more faults. Otherwise,

the number of faults and working time are recorded.

• The time-to-failure is calculated based on the number of faults or the working time. The

final MTTF is the average value of all iterations.

For iteration i, the time-to-failure is measured as the number of faults injected as:

TTFi = fi ×


λsystem
(6.87)
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Table 6.1: Router’s Weight and Gate Ratio.

Module Submodule Weight Gate Ratio
Network 100% 100%

Network Routers 70% 100%
Channels 30% 0%
Router 100% 100%

Input Buffer 69.72% 7.90%
Router Crossbar 8.00% 11.43%

Switch-Allocator 7.00% 16.97%
Others 15.28% 63.7%

C

gate
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C

DFF

EIJ_2.v

O
I

IN
ON

1 or 0

1 or 0

(a) (b)

Figure 6.10: Error Injector architecture (a) Single output gate, (b) Flip-flop with two outputs.

Where λsystem is the raw fault-rate of the original system. After finishing a simulation of N

iterations, the MTTF value of a system is given by Eq. 6.88 where fi is the number of faults

causing failure in experiment i.

MTTFsystem =

∑N
i= TTFi
N =

∑N
i= fi
N × 

λsystem
(6.88)

In order to verify the analytical model, we use two configurations: (1) Gate Ratio where the

fault-rate is linear to the number of utilized gates in the netlist file, and (2)Weight where the fault-

rate is higher in the data transmission modules which are likely to have a significant impact on the

system correctness. The fault-rate ratio can be seen in Table 6.1 where the errors are focused on

input buffers, crossbar and links.

6.5 Evaluation Results

6.5.1 Evaluation Methodology

In this section, we evaluate the reliability of NoC systems with twomethodologies: the proposed

analytical model and a system-level simulation. To demonstrate the efficiency of the proposed ana-

lytical analysis, we used our proposed 3D NoC (3D-FETO) as a case of study previously presented
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Figure 6.11: MTTF Monte-Carlo simulation process.

Table 6.2: Simulation configurations.

Parameters Value
Flits Size 44 bits

Header Size 14 bits
Buffer Depth 4
Switching Wormhole-like

Flow-control Stop-Go
Routing Look-ahead Fault-Tolerant

in 4. We select a baseline NoC model (OASIS) [149] in these evaluations. To compare between

the two methods, we use a similar error-rate then calculate the MTTF and RAF values. The con-

figurations are shown in Table 6.2. The final system-level simulation results are compared with the

analytical model results to study the accuracy of the proposed model.

6.5.2 Accuracy Evaluation

Figure 6.12 and 6.13 shows the comparison of RAF values between the proposed analytical

model and the simulation results. For a single router assessment, the analytical method predicts

the RAF values with acceptable deviations (under 33%). Moreover, there is a significant amount

of hidden faults in the baseline model. In this kind of situations, faults are injected; but, they do

not give a detectable impact on the system. Especially, soft errors, which are injected in a single

clock cycle, are likely to become hidden faults. In contrast, hard faults on the router give a higher
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Figure 6.12: Comparison results with gate ratio distributions.

impact on the system.

For networks’ assessments, we also simulated and compared the RAF values for four different

network sizes:  ×  × ,  ×  ×  and  ×  × . The worst cases can be observed in the soft-

error simulation with weight distribution and hard-fault simulation with gate ratio distribution.

However, the accuracy is still better than a single router where most of the deviations are less than

23%. The worst case is hard fault tolerance with the gate ratio distribution of a × ×  network

where the difference can reach up to 31.64%.

The deviation in the accuracy values are mostly caused by the occurrence of hidden faults. They

are defined as the faults that can be injected without causing the system crash. Such hidden faults

cause the observed difference between the analytical model and the Monte-Carlo simulation. For

instance, a fault on the routing unit or output port may lead to a misrouted packet. Nevertheless,

at the next router the packet can be routed correctly without causing dead-lock or live-lock in the

network. Another example is the presence of hidden faults in the intra-router routing where the

employed routing algorithm chooses either the X, Y, or Z direction depending on the used routing

algorithm. At the presence of hidden faults, the order of dimensions might be altered. That is,

instead of routing a packet through X, Y then Z, it is sent through Y, X then Z. However, and
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Figure 6.13: Comparison results with weight distributions.

despite this change, the packet can still reach its destination correctly without the system crashing.

Furthermore, and as shown in Fig. 6.13, the difference in soft errors is slightly higher than hard

faults. This is because soft errors are injected within one clock cycle which may not affect the

operation of the system if this latter is idling. Because this type of faults did not crash the system,

they make the non-fault-tolerant system become more resilient and increase the MTTF values,

while our model cannot estimate it. Since we adopted the weight distribution, where faults are

injected more on the fault-tolerant modules, the assessment results are closer than those of the

gate ratio.

In summary, the overall accuracy is acceptable with most cases having less than 23% of devia-

tions. There are some cases where the difference is considerable; however, the deviation is logical

due to the low granularity of the reliability assessment. In fact, when designers apply the assess-

ment method before obtaining the design characteristics (e.g., gate ratios), the deviations are still

reasonable.

6.5.3 Reliability Assessment Speedup

The proposed analytical method offers faster estimation time in comparison to other conven-

tional methods. Table 6.3 shows the reliability assessment simulation time and the speedup ob-
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Table 6.3: Reliability Assessment Speedup.

Evaluated module AMTTF simulation Proposed method Speedup
A router 11 hours 0.090 second 440,000

A × ×  network 20 hours 0.091 second 791,209
A × ×  network 2 days 0.092 second 1,878,261
A × ×  network 3.5 days 0.109 second 2,774,312

tained with the proposed analytical model when compared to the conventional MTTF simulation,

previously explained in Section 6.4. The proposed method’s calculation is performed using GNU

Octave, and theMTTF simulation performs netlist simulations for 1000 cases using CadenceNC-

Sim CAD tool. Both simulations were conducted on a Linux CentOS 6.4 machine using Intel

Xeon E5-2620 (8 cores, 2.10Ghz) and 64 GB of RAM.

Thanks to the low complexity of the proposed method, the simulation time is always in the

hundreds of milliseconds range for all cases. On the other hand, the MTTF simulation requires

more than 11 hours of computation for just a single router. This results in a speedup of 440,000

times with our proposed method. The long execution time of the MTTF simulation is caused by

the main following factors: (1) the high complexity of the netlist files where a router’s netlist file

consists of over 15,000 separated gates; (2) the high complexity of the fault injection (i.e., each gate

requires an error injection module and a fault distribution system); (3) the verification complexity

which usually tries to cover all possible operational situations (e.g., a seven-ports router has 49 ()

cases of communication); and (4) it requires four different simulations for four different types of

fault: soft error, hard fault, stuck-at-0 and stuck-at-1. When we increase the network size, the

MTTF simulation time has significantly increased. On the other hand, the assessment time of the

proposed method does not scale up with the network size. This is given by the assumption that

the routers in the same position (corner, edge, side or middle) inside the network have a similar

fault-rate. Therefore, the calculation can be reduced into Eq. 6.83 and 6.82. In fact, the obtained

speedup with the proposed method is 791209, 1878261, and 2774312 for  ×  × ,  ×  × ,

and × ×  network sizes, respectively. The speedup values are expected to be much higher with

larger network sizes.

In summary, the proposed analytical method provides an extremely fast solution to estimate the

reliability of NoC systems. Although the proposed method is not as accurate as the MTTF sim-
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ulation, its tremendous speedup values are very compelling for early system reliability assessment.

In fact, to perform the MTTF simulation, we need to obtain a complete design and verification

test which may take several months of development. If the design cannot pass the reliability re-

quirements, the waste in re-design time and resources can be extremely critical.

6.6 Conclusion

In this chapter, we proposed a reliability assessment for fault-tolerant NoCs. The proposed

method is based on three basic steps. First, the system is divided into sub-systems. Second, a

state model is built upon each sub-system and the reliability value can be obtained. Last, the final

reliability of the system can be generated from its sub-systems. In addition, we present an extended

method for network’s reliability that also helps designers.

Through extensive evaluations, we showed that the proposed method was acceptably matched

with the simulation method while it reduces a large amount of modeling and simulation time and

effort. This means that our method can provide a faster solution for fault-tolerant systems. Before

designing, researchers can apply the proposed method to estimate the enhancement in terms of

reliability which can help them understand the efficiency of the system.

In our assessment, we also point out the benefits of the fault-tolerant system in terms of reli-

ability improvement. In addition, the impact on the system performance is also analyzed. Based

on the pros and cons of the fault-tolerant system, designers can select the appropriate mechanisms

and configurations to match their requirements.
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7
TSV-based 3D-NoC System Design

T
he previous chapters have proposed and evaluated complete fault tolerant archi-

tectures and algorithms for 3D-NoCs. The reliability analytical models of these

systems are also well addressed. To explore the capacity of 3D-IC technology, this

chapter aims to advance to the system-level architecture where application-specified systems are

presented. In the first part, the dissertation approach for design for reliability is depicted. In the

second section, the working flow of TSV-based design is presented. After that, the design with

TSV and the related issues are discussed. This chapter concludes with the implementation results.
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Figure 7.1: Design for Reliability: Dissertation scope.

7.1 Design for Reliability and Dissertation Approach

7.1.1 Design for Reliability

The different proposals presented in the previous chapters are firstly summarized hereafter. Fig-

ure 7.1 shows the design for reliability method with the gray polygon representing the scope of this

dissertation. This work covers the specification stage where the fault-tolerant architectures and al-

gorithms (e.g. PCR, Sharing TSV, Virtual TSV, ...) are proposed. The configurations of the

fault-tolerance is also briefly discussed. In order to help designers early assess their NoC designs,

the preliminary design stage is handled by the reliability analytical model in Chapter 6. At the end

of this stage, designers have an early assessed reliability improvement obtained with the adopted

fault-tolerant techniques. In the detailed design, a conventional working flow is adopted with some

adjustments. After passing the function verification and getting the netlist design, the design is

put under MTTF Monte-Carlo simulation which again help designers to obtain finer reliability

results. Depending on the level of satisfaction with the results, it can be forwarded to FAIT, or a

re-design is required.
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7.1.2 Dissertation Approach

Figure 7.2 shows how this dissertation is involved in the design flow. In addition to the con-

ventional design steps represented in Fig. 7.2 (a), this dissertation scope consists of three early

design stages for reliability. These stages are Analytical Analysis, Monte-Carlo MTTF simulation

and TSV Replacement Calculation, which are presented in pink boxes in Fig. 7.2 (b). Besides the

Specification, the Analytical Analysis is employed to help designers early estimate the improvement

in terms of reliability. Other parameters, such as possible area overhead or power consumption,

can be also estimated in this step. After the Specification stage finds the suitable solutions and

configurations, the RTL-level Design stage is where the architecture is created. Later, a functional

simulation/verification is used to ensure the correctness of the design and its performance. The

RTL architecture undergoes the Synthesis step. At the synthesis output, netlist designs have to

be verified with two steps: function and reliability. To help estimate the reliability of the netlist

design, the Monte-Carlo MTTF Simulation is added. If the design cannot pass these two steps, it

needs to be adjusted in either specification or RTL-level design. The passed design is forwarded to

the layout steps. In these steps, with the involvement of TSVs, their positions are calculated. Later,

the flow is completed with Place and Route (P&R), Post P&R Simulation and IO pad Insertion.

In this dissertation, 3D-NoCs are the main target for fault-resilience. Therefore, the fault-

tolerance for the cores/PEs and the whole system is out-of-scope. However, if designers aim

to perform Design for Reliability, this proposed working flow is definitely suitable. Of course,

designers have to provide the fault-tolerant techniques and the analytical model for their own

circuits. This dissertation is carefully designed for being compatible with any cores/PEs type.

There are no issues when adding cores or PEs for completing the architecture.

Table 7.1: Estimated development time of the fault-tolerant 3D-NoC executed by a single developer.

Fault-TolerantMethod Design Time Simulation Time
Pipeline Computation Redundancy 2 months 1 hour (RTL, 8 benchmarks)
Hard Fault Tolerance (LAFT, RAB, BLoD) 3 months 1 hour (RTL, 8 benchmarks)
Detection, Diagnosis, and Recovery Mechanism 1 month 1 hour (RTL, 8 benchmarks)
MTTF Monte-Carlo Simulation 2 months 3.5 days ( ×  × , Uniform)
Reliability assessment using analytical model 3 months less than 1 second
Cluster-TSV fault-tolerance 3 months 1 hour (RTL, 8 benchmarks)

As shown in Fig. 7.1, the risk of re-design can role an important part in deciding the fault-

tolerant techniques and configurations. In this part, we extend to the development breakdown
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Figure 7.2: Design flow for fault-resilient 3D-ICs: (a) Traditional flow; (b) Dissertation approach.

of the proposed architectures and algorithm and our experiments. Table 7.1 shows the estimated

development and simulation time of the fault-tolerant 3D-NoC. Design time consists of RTL

design, verification and back-end design. In summary, the total time that one designer may need

is around 11 months to complete the design in RTL and perform the MTTF simulation. This

can be considered as a significant amount of time to be risked. In contrast, reliability assessment

required approximately 3 months. Nevertheless, it can reduce the risk of re-design. Moreover,

it can be reutilized for other circuits and future projects. On the other hand, developing MTTF

Monte-Carlo simulation is also a promising solution where the finest level of reliability evaluation

can be assessed. Because the fabrication and testing steps are time consuming, and demand a

significant budget, MTTF simulation can alleviate the risk of unmet requirement situations.

7.1.3 Dissertation Goals and Discussions

In the introduction section, the goals of this dissertation have been declared. Based on them,

this dissertation has proposed multiple architectures and algorithms and also created a working

flow for Design for Reliability. Table 7.2 summarizes the approaches on this dissertation and the
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predefined goals.

Table 7.2: Dissertation goals and the proposed methodologies.

Methodology Step Reliability Modularity Scalability Adaptivity
Analytical assessment Preliminary - Yes Yes NoC-based
Soft Error Tolerance Spec./RTL Yes Yes Yes Yes
Soft-Hard Fault Tolerance Spec./RTL Yes Yes Yes Yes
Cluster-TSV Fault Tolerance Spec./RTL/P&R Yes Yes Yes Cluster-based
Monte-Carlo MTTF simulation Synthesis - No No any design

For the preliminary design, reliability assessment does not help enhance the fault resilience;

however, it is proposed to help designers understand the reliability and how to approach it in a

preventive and proactive fashion. At the later steps, the Monte-Carlo MTTF simulation also

roles the same part which can be adapted to any design.

For fault-tolerance, the soft error resiliency has significantly enhanced the reliability and can be

easily adapted to any system. Because the proposed method (PCR) works on the pipeline stage,

it has a high level of modularity. By combining the soft error and TSV-defect resiliency with the

existing hard fault tolerant methods, this dissertation presents a complete reliable architecture that

achieves our objectives. Because the cluster-TSV has been proposed with the cluster distribution,

its adaptivity is limited. However, as mentioned in Chapter 5, using ECC codes or adopting a

TSV redundancy method can help designers handle the random type of TSV defects.

7.2 Design with Through-Silicon-Via

In this section, the design of TSV is briefly summarized and presented1. As one of the disserta-

tion approach (see Fig. 7.2), the TSV placement flow is also explained. Here, the layout of a TSV

is designed as an OBS macro [176] and prevents the layout CAD tool from putting any standard

cells on it as the Keep-out-Zone (KoZ). The layout of a TSV from an abstract level (LEF file) is

shown in Fig 7.3 [175, 176].

Figure 7.4 shows the working flow of designing the TSV-based system. The TSV macro (LEF

file) was previously designed and checked in our laboratory [176]. Here, the macro file is used to

integrate the YSV macro in the final layout. The design flow starts with a complete RTL design.

Before undergoing the synthesis stage, the design is wrapped by a TSV.v - a dummy Verilog model

of TSV. For each vertical wire, a TSV.v is inserted between the design and I/O ports. A wrapper is
1Readers who are interested in more details and completed tutorials, please visit our laboratory website

at: http://adaptive.u-aizu.ac.jp/?page_id=.
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Figure 7.3: Layout of a TSV from a LEF macro definition [175]. Values: A = ., B = ., C = ,
D =  and E = . [176].

used to wrap all TSVs and the original design together. Note that designers can put TSV.v inside

their design; but, it can maybe removed if the complete flattening option 2 is used.

1 module TSV(input i, output o);

2 assign o = i;

3 endmodule

Listing 7.1: TSV.v.

After obtaining the wrapped module, it is put through the synthesis flow as a normal design.

The netlist file from this step is brought to the modify the netlist file step. In this step, the netlist file

consists of multiple TSVmodules. The objective of this step is to keep only one TSVmodule which

is placed and routed as a TSV macro. At the end of this step, all TSV modules are unified and the

new netlist file is forwarded to the Place and Route (P&R) step. In the P&R, the TSV macro is

used for each TSV module, and standard cells are put for the normal gates. The positions of TSVs

are also calculated in advance as shown in Fig. 7.5 where a port has 44 data TSVs (4 clusters,

each cluster: 1,2,..11) and one control TSV (C). Finally, a layout with TSVs is obtained. Example

layouts are shown in Fig. 7.6. The design is described in details in Chapter 4. The parameters of

the TSV design is shown in Table 7.3 [177]. Depending on the design requirements, the positions

of TSVs have to be calculated carefully.
2If full flattening is used, the compiler un-groups all sub-modules which omits the TSV.v module (see

Listing 7.1). As a result, the modify the netlist file step fails to find TSV instantiations.
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Table 7.3: Technology parameters.

Parameter Value

Technology Nangate 45 nm [156]
FreePDK3D45 [155]

Voltage 1.1 V
TSV’s size .µm× .µm
TSV pitch 10 µm
Keep-out Zone 15 µm

7.3 Design of 3D-NoC systems

7.3.1 Specification

In the Section 7.2, the design flow with TSVs has been presented. This section discusses in

details the design of 3D-NoC systems. In fact, this section is based on the design with TSV;

however, there are several extra steps that need to be carefully considered.

Figure 7.7 depicts the considerations of developing NoC systems. From the target application,

there are several requirements such as: reliability, performance, parallelism, area, power consump-

tion and thermal issue. For each of these requirements, there is a set of development requirement.

Here, the requirements of reliability are depicted with: (1) type of issue (soft errors, hard faults,

TSV defects), (2) detection solution, (3) recovery solution and (4) the target MTTF or the quan-
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Figure 7.5: Sketch of ×  layout.

titative value.

To satisfy the requirements of the target application, designers can select a proper topology

(mesh/torus, 2D/3D), a routing solution (deterministic/adaptive) and the protocol inside the net-

work. If the reliability issue is the main target, fault-tolerant mechanisms can be selected to be

used.

Besides of selecting the fault-tolerant mechanism, the configurations of the selected methods

are also important. For instance, selecting the number of back-up channels in the Bypass-Link-on-

Demand can decide how reliable the crossbar connections are. Moreover, it also impacts the area

cost, power consumption and performance.

Because TSVs role an important part in the system, their configurations (sizes, pitches, KoZ)

also need to be considered. The size and pitch of TSV impact the electronic characteristics (re-

sistance, capacitance) which affect the its latency. The KoZ area is needed to avoid the TSV

movement effects nearby devices; but, it also significantly increases the area cost.

130



TSV
area

450 μm

4
5

0
 
μ

m

6
0

0
 
μ

m

600 μm μmμm

TSV
area

TSV
area

TSV
area

TSV
area

(a) (b)

Figure 7.6: Example layout of models with TSV: (a) a single SHER-3DR router for the 3D-FETO system
(see Chapter 4), #TSV: 208; (b) a layer of ×  3D routers, #TSV: 656.

7.3.2 Preliminary Design

In the preliminary design stage, designers need to assess the characteristic of the design. In

summary, there are several aspects which are described as follows:

• Area cost: the possible total area cost can be estimated from the complexity of the architec-

ture and algorithm. If this step implements a high-level model of the system, a high-level

synthesis tool [178] can help estimate the design area cost. Otherwise, using profiling tools

is another option to help designers estimate the complexity of the design. If the architec-

ture is the combination of previously designed models, the final results can be obtained by

accumulating them.

• Power consumption: this is similar to area cost estimation. ForNoC-based systems, ORION [179]

is a well supported tool for estimating the power consumption. If high-level synthesis tool

is used, a report on power consumption can be easily obtained.

• Performance: The performance estimation can be precisely obtained by an accurate cycle

simulator (e.g. GARNET [180] or McPAT [181]). In such estimation, designers need

to investigate the impact of task mapping on the performance of the system. The possible

degradation of fault-tolerant methods also need to be investigated. If the application is

unspecified, using a task graph is a proper solution [163] where it provides in details the

latency, bandwidth and execution order of the tasks.
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Figure 7.7: Network-on-Chip system specification.

• Thermal hot-spot/Stress issue: To reduce the impact of thermal or stress issues, designers

also need to consider them as important criteria. In fact, if there are regions with high

temperatures, they need to be addressed properly. There are also there approaches: (1)

Integration: proposing a low power device and inserting thermal removal infrastructures;

(2) Hardware: monitoring the temperature to reduce the operation of the hotspot area; (3)

Software: using a thermal-aware program to alleviate the issue.

• Yield & Test: the yield rate is heavily depending on the manufacturing processes which

designers has to firstly consider. In TSV-based 3D-ICs, the failure rate is accumulated

by stacking layers together. Therefore, testing each layer is needed to improve the yield

rate [182, 183]. Figure 7.8 depicts the possible test flow for 3D-ICs. For each completed

die, it is carefully tested to avoid the defects. Then, the two healthy dies are stacked together

and a test is established to ensure the correctness of logic functions and TSVs. If the stack

test is done and passed, other dies are stacked and tested until finishing the stack process.
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After the assembly and packaging process, one more test is performed into the final chip.

As shown in this flow, there are numerous of needed tests in 3D-ICs manufacturing which

impact the cost of the device.

• Reliability issue: as discussed in Chapter 6, designers need to obtain the reliability of the

system to avoid redesign risk. Especially for highly reliable applications, designers need to

select proper fault-tolerant solutions to ensure the reliability. This dissertation has presented

a method to early assess the reliability of NoC systems. To obtain the reliability of the full

system, the proposed method can be extended or an alternative method can be used [43].

Figure 7.8: Test flow for 3D-ICs [182].

7.3.3 Detail Design

After satisfying the requirements in the preliminary design, the detailed design stage is fully

performed from RTL design to the final layout. By using the specification and possible high-

level models, the design can be coded using an HDL language. The following steps are: RTL-

simulation, Synthesis, Post-synthesis simulation, Monte-Carlo MTTF simulation, TSV Placement

calculation, Place and Route, P&R simulation and IO pad insertion. The fabrication and testing

step (FAIT) follows this stage. Becausemost of the steps are well known, this section only discusses

about three two additional parts: Monte-Carlo MTTF simulation and TSV Placement calculation.

Monte-Carlo MTTF simulation

The Monte-Carlo MTTF simulation was previously presented in Section 6.4. The flow of this

simulation consists of the following:
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Figure 7.9: List of files in the design.

• The NoC architecture is designed in Verilog HDL and synthesized using Synopsys Design

Compiler to obtain a post-synthesis netlist model.

• A fault distribution system is automatically integrated inside theNoC netlist model by using

Python’s Regular Expression scripts [174]. The faults are modeled in stuck at “0” and “1”.

Our method is similar to the fault injection methods in [102, 133].

• The post error injection netlist model is used to simulate and find the number of faults

leading to failure.

• The number of faults is recorded for further processing.

The error injector architectures are shown in Figure 6.10 with two models: normal gate and

flip-flop gate. When the error injector is enabled (by setting up C = ), it forces the output of

its attached gate to “0” or “1”. If the error injector is disabled, the correct output is forwarded.
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Because the netlist generated from EDA tools does not support error injection, we need to process

the design to allow. In order to do that, we propose a process named as “Netlist Processing”.

Netlist processing consists of two steps: (1) insert injectors into netlist file; and (2) link the error

injectors. Figure 7.10 shows the flow chart of error injector inserting. In the first step, it prepares

the possible gate labels and input/output labels which are extracted from library. Second, the script

file matches the gate labels with the module instantiations. If they are matched, it creates new

output wires, insert EIJ.v (the error injector module) to the output of the gate. After completing

a file, a random generator (RAN_F.v) is inserted for generate random fault positions.
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Match the 
module 
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Library Analysis
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Output pattern
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module 
output

Create a 
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verification

New output 
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Figure 7.10: Flow chart of error injector inserting.

An example of input and output of this process is shown in Fig. 7.12. The processed module is

AND 3 to 1 which consists of two AND gates. In the error injection process, faults can be inserted

in these gates. In order to do that, the outputs of these gates are driven by a fixed value to create

a stuck-at-0/1 failure. Therefore, beside the instantiations AND_2x1, we insert two EJI modules.

Notice that the outputs of AND_2x1s are changed to temporary values (temp_wire) which are the

inputs of the EIJ modules. These EIJ modules are actual driver of the correct outputs (n2 and o1).

Depend on the control signal c, the EIJs can change the outputs or keep the correct values. To

control the EIJs, we need a random generator which takes a trigger and generates a randomized

position.

With the aids of trigger signals, a multiple sub-modules design can have ability to distribute the

fault properly. Figure 7.11 shows how the system decide which module having a fault. If the fault

is triggered in the top file (network), the router is trigger with equally probability. Therefore, one

of them will have a fault which is distributed to its sub-modules. In the submodules (input port,

switch allocators, ...), each of them have a dedicated probability. Depended on those probabilities,
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Figure 7.11: Fault trigger.

the fault is distributed. A similar process is applied to the deeper sub-modules. When the smallest

module has been triggered, the signal is send to RAND_F to select the faulty gate.

module AND_3x1(x1, x2, x3, 
o1)

input x1,x2,x3;

output o1;

assign o1 = n1;

endmodule

G1

G2

x1
x2

x3
o1

Original model

G1

G2

x1
x2

x3 o1

EIJ

EIJ

f_t

Processed modelRTL code

module AND_3x1(x1, x2, x3, 
o1, f_t)

input x1,x2,x3;

output o1;

input f_t;

wire [1:0] temp_wire;

wire [1:0] c;

wire x1,x2,x3;

wire o1, n2;

AND_2x1 G1 (temp_wire[0], x1, 
x2);

AND_2x1 G2 (temp_wire[1], x3, 

n2);

assign o1 = n1;

endmodule

processed netlist

module AND_3x1(x1, x2, x3, 
o1)

input x1,x2,x3;

output o1;

wire x1,x2,x3;

wire o1, n2;

assign o1 = n1;

endmodule
netlist

Figure 7.12: An example of input and output of the netlist processing.

Figure 7.13 shows the flow chart for multiple modules processing. This process is similar to a

single module process; however, it adds a signal for trigger the fault which is used later.

The simulation process is depicted in Figure 6.11:

• At the first iteration, the injected position is generated and the corresponding position is

distributed with a fault.
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• Hard faults are injected until finishing the experiment. Soft errors disappear after one clock

cycle.

• A testbench is designed to verify the system correctness after injecting a fault (100% of the

PEs are connected and 100% of the packets are correctly delivered). If the system is still

correctly functioning after a fault is injected, the simulation injects more faults. Otherwise,

the number of faults and working time are recorded.

• The time-to-failure is calculated based on the number of faults or the working time. The

final MTTF is the average value of all iterations.

For iteration i, the time-to-failure is measured as the number of faults injected as:

TTFi = fi ×


λsystem
(7.1)

Where λsystem is the raw fault-rate of the original system. After finishing a simulation of N

iterations, the MTTF value of a system is given by equation 7.2 where fi is the number of faults

causing failure in experiment i.

MTTFsystem =

∑N
i= TTFi
N =

∑N
i= fi
N × 

λsystem
(7.2)
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Figure 7.14: MTTF Monte-Carlo simulation process.

After the MTTF simulation finds out the reliability of the system, designers can decide to

forward to the next step and keep optimizing or enhancing the design. If the design is completed,

the place and route is the following step. However, before the P&R step, the positions of TSVs

should be calculated.

TSV Placement Calculation

In chapter 5, the cluster-TSV method has been presented. This section discusses the mapping

of the complete final system TSV connections. Figure 7.15 shows a layer layout of × . Besides

the PEs and the routers, TSVs are placed in a fixed area. After defining the area of TSVs, each

TSV address has to be carefully calculated. To ensure the alignment, the TSVs’ position on the

other layer have to be properly aligned.

After calculating the TSVs’ positions, TSVs are placed onto the layout. The other modules

(routers, PEs, NIs) are later placed. Finally, the routing process connects them together.

7.4 Implementation Results

In the previous sections, the TSV-based 3D-NoC system design flow has been discussed. In

order to summarize the methodology, this section presents the implementation results. Table 7.4

depicts the system configurations of the design.
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Table 7.4: System configurations.

Parameter Value
# ports 7

Topology 3D Mesh
Routing Algorithm Look-ahead routing

Flow Control Stall-Go
Forwarding mechanism Wormhole

Input buffer 4
Flit width 44

7.4.1 Hardware Complexity

Table 7.5 shows the hardware complexity of a single router of the final system (TSV-FETO)

in terms of area, power (static, dynamic, and total), and speed. In comparison to the router in

which we implement the proposed techniques (3D-FETO), the area and power consumption have

increased by 30.42% and 18.66%, respectively. The maximum speed has also slightly decreased by

12.37%. In comparison to the baseline model, the proposed system almost doubles the area cost

and power consumption while decreasing themaximum frequency by about 50%. The degradations

in this evaluation is caused by the fault-tolerant modules where additional area cost is required.

The fault-tolerant modules also operate concurrently with the router which require extra power

consumption. Moreover, the calculation of the fault-tolerance is more complex than the routing

process in the baseline model which reduces the maximum frequency. However, the final design
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is still relatively small (average router+TSVs’ width: µm, see Section 7.4.2) and the maximum

frequency is still significantly high enough for operation (≥500MHz).

Table 7.5: Hardware complexity of a single router.

Area Power Speed
Model (µm) (mW) (Mhz)

Static Dynamic Total
Baseline 3D router 18,873 5.1229 0.9429 6.0658 925.28
3D-FETO Router 29,780 10.017 2.2574 12.3144 613.50
TSV-FETO 38,838 11.7910 2.8273 14.6128 537.63

7.4.2 Layout

The layouts of ×  layer are depicted in Fig. 7.16. The parameters can be found in Table 7.3.

The required areas for a  ×  layer of 3D-FETO and TSV-FETO are µm × µm and

µm× µm, respectively. In average, the final router width is µm.
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Figure 7.16: Layout of a ×  layer: (a) 3D-FETO; (b) 3D-FETO + TSV Fault-Tolerance.

7.4.3 Performance Evaluation

Latency Evaluation

In this experiment, we evaluate the performance of the proposed architecture in terms of Av-

erage packet Latency (APL) over various benchmark programs and defect-rates. The simulation

results are shown in Fig. 7.17 (a). From this graph, we notice that with a 0% of defect-rate, the

system’s tolerance has similar performance in comparison to the baseline system.

When we increase the defect-rates in the proposed system, it has demonstrated additional im-

pacts on APL. At a 1% fault-rate using Matrix, Uniform, Transpose, and Hotspot 10% bench-
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marks, the system increases the APL by 83.24%, 64.46%, 11.30% and 66.55%, respectively. These

high impacts are due to the occurrence of bottlenecks inside the network. Because all vertical

connections are utilized, Virtual TSVs have caused congestions by sharing the TSV between two

routers. The serialization is already a bottleneck technique. These bottlenecks effects are even

higher at a 30% of defect-rate where the APL can be over 3 times the 0% case in the synthetic

benchmarks.

 0

 20

 40

 60

 80

 100

Transpose Uniform Matrix Hotspot VOPD PIP MWD H.264A
ve

ra
ge

 L
at

en
cy

 (
cy
cl
es
/p
ac
ke
t)

(a)

Baseline 0% 1% 5% 10% 20% 30%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Transpose Uniform Matrix Hotspot VOPD PIP MWD H.264

T
hr

ou
gh

pu
t (
fli
t/n
od
e/
cy
cl
e)

(b)

Figure 7.17: Evaluation result: (a) Average Packet Latency; (b) Throughput.

With H.264, PIP, MWD and VOPD benchmarks, the APL incrementation are significantly

reduced due to the low utilization of TSV. We can observe the identical performance of the VOPD

benchmark from a 1% to a 30% defect-rates. With the PIP benchmark, the system under 1%

defect-rate has similar performance to 0% thanks to the optimization process which disables the

unused clusters. With the MWD and H.264 benchmarks, the impact on APL is gradually in-

creased when increasing the defect-rate. Even at a 30% of defect-rate, the APL values of MWD

and H.264 are increased by 129.91% and 60.04%, respectively. Because there is no optimized

routing technique for these benchmarks, the bottleneck effect is expected to happen. Although

there are significant impacts on latency, the system has proven to work without major issues in all

benchmarks.

141



Throughput Evaluation

Figure 7.17 (b) depicts the throughput evaluation with different benchmarks. At 0% defect-rate,

the proposed system’s throughput is similar to that of the baseline. When defects are injected into

the system, we can observe some degradation in throughput caused by the bottleneck effects on

the system. Similar to APL, the throughput degradation on realistic traffic benchmarks (VOPD,

H.264, MWD and PIP) are significantly better than the synthetic ones. The system at a 20%

defect-rate provides a decreased throughput by 71.17%, 64.36%, 67.44% and 64.37% for Trans-

pose, Uniform, Matrix, and Hotspot 10%, respectively. At the same defect-rate, VOPD, MWD,

PIP and H.264 have 46.03%, 50.04%, 28.17%, and 19.79% of throughput degradation. This lower

impact is caused by the low utilization of vertical connection rate and the optimization process.

The throughput of realistic benchmarks are naturally smaller than the synthetic ones because of

the specific tasks order of execution that was observed in the task graphs [162, 163].

Although there is a considerable degradation in the throughput evaluation, the system still

maintains over 0.1 flit/node/cycle in the highly stressed benchmarks, even at extremely high defect-

rates.

7.5 Conclusion

In this chapter, the dissertation approach on Design for Reliability was presented. In summary,

this work aims to complement the three first design stages: Specification, Preliminary Design and

Detail Design. The previous chapter has presented the fault-tolerance techniques and the assess-

ment methodologies. By merging them into the Design for Reliability graph, this chapter tried to

present a complete and comprehensive design flow. The adopted design method incorporates all

the fault-tolerant architectures and algorithms along the reliability assessment models to present a

highly reliable 3D-NoC design,

142



8
Conclusion and Future Work

N
owadays, technology has become an essential part of our life, not only in industry

or academic research, but also in consumers’ daily life. In fact, with the continuous

technology scaling and systemminiaturization, it is now possible to implement a full

system capable of performing various tasks (e.g., computation, control, memory storage, etc.) on a

very small chip area that can be embedded and used anywhere and anytime. Despite the huge steps

that technology has witnessed, an extensive load of research have been undertaken throughout the

past decades to make these systems much more faster, power efficient and durable. Among the

numerous proposed solutions, 3D Integrated-Circuits (3D-ICs) have been considered as one of the

pillars of future systems. This is because they offer less power consumption and delay, improves

the density and allows heterogeneous stacking. From the system perspective, 3D-stacked ICs can

integrate a larger number of cores per chip. On the other hand, increasing the number of integrated
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cores arises another major concern for future ICs. In fact, connecting such a large number of cores

requires better scalability, power consumption and latency. In order to solve the interconnection

challenges, 3D-Network-on-Chip (3D-NoCs) is widely considered as the backbone of future on-

chip communication infrastructures.

Despite its benefits, 3D-NoCs are predicted to face several reliability issues. As it is the case

for existing 2D-ICs, both soft errors and hard faults are the major challenges for highly reliable

systems. Moreover, by using Through-Silicon-Vias (TSVs) as the interlayer medium, 3D-NoCs

also encounter the TSV defect problem. All of these fault types give has significants impact on the

reliability of the system from manufacturing (yield) to the run-time (time to failure). Since 3D-

NoCs are predicted as the future communication paradigm, it has become primordial to properly

address the potential risk of faults and present efficient methods to work around their presence.

Besides proposing fault-tolerance methods, one of the most critical challenges for designers is to

understand the efficiency of themethods in terms of reliability. Not after the systemmanufacturing

or design; but, it should be in the early design stages. Therefore, reliability assessment has become

a required step in the Design for Reliability flow.

Starting from the aforementioned facts, the ultimate goal of this research was to propose a com-

prehensive set of faults-tolerant architectures and algorithms to tackle the presence of soft errors,

hard faults, and TSV defects in 3D-NoC systems, and 3D-ICs in general. In addition, a reliability

assessment platform was presented to help designers analyze the fault-tolerance mechanism and

avoid any risk of expensive redesign in terms of time and cost. Consequently, this dissertation

offers a complete and encompassing design flow that covers the most critical challenges for future

highly reliable systems.

A soft error resilient method was presented to deal with the occurrence of soft errors on the

pipeline stages. By adding redundant calculation and ensuring the transmission FSM, the sys-

tem can detect soft errors. For the correction, another redundancy is required for using TMR.

The proposed method was successfully implemented and has obtained a maximum of 33% (1/3)

of error-rate while ensuring graceful degradation in terms of performance, area cost and power

consumption. With the help of an existing Error Correction Code, previous hard fault tolerant

techniques, and a light-weigh detection, diagnosis and recovery mechanism, the firstly proposed

system (called 3D-FETO) was able to deal with both soft errors and hard faults.
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After ensuring the NoC fault-tolerance within layers, the inter-layer communication was con-

sidered. In fact, cluster defects are considered as the major source of failure in TSV-based 3D-ICs

which cannot be efficiently dealt by using redundancy or coding. To solve these issues, a scalable

management scheme is proposed. Without requiring any redundancy, the proposed architecture

and algorithm provide smart architectural and TSV mapping solutions. The final results show an

extremely high amount of working connections (nearly 100%) even with high defect-rate (up to

50% defected cluster). Although the performance has shown a degradation with high defect-rate,

it still reasonable seeing its high fault-tolerance capacity. For instance, when evaluating the pro-

posed system with realistic traffic patterns, the system performance is still maintained, even with

a 1% or 5% of defect-rate. Finally, with the aid of the aforementioned soft error and hard fault

tolerant techniques, the final and complete system, named TSV-3D-FETO can handle all types

of defects while maintaining a graceful performance degradation.

In order to help designers understand the efficiency of any fault tolerant technique employed

in a given NoC system, a platform for reliability assessment is presented. Based on the Divid-

ing and Conquer concept and Markov state model, a complex NoC design can be split for analysis

and later summarized for final reliability results. A new dedicated parameter is also presented to

measure the efficiency of fault-tolerant techniques. For validation, a netlist-based simulation was

also performed and compared with the proposed assessment platform. The final results showed

a reasonable accuracy of the reliability assessment which can be obtained at an extremely short

amount of time. Moreover, an in-depth analysis of the proposed fault-tolerance techniques was

undertaken.

In summary, this dissertation has shown a complete and comprehensive set of fault-tolerant

architectures, algorithms, and reliability assessment for 3D-NoC systems. The final system can

handle multiple types of errors/faults/defects, and its performance, area cost, power consumption,

and reliability efficiency can be precisely analyzed. In addition, this work has completed the final

layout of the design which showed a solid flow of Design for Reliability: specification, analytical

analysis, and design stage. Moreover, the presented approach is proposed for general 3D-IC design

and can be applied to any system or any type of NoC.

Despite the completed work has been provided, 3D-ICs and 3D-NoCs still have several issues

to be addressed. As classified in the related works, there are different approaches on fault-tolerance
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(e.g., physical-layer or system-layer solutions) which can be combined to obtain a better reliability.

Since 3D-NoCs is only the communication infrastructure, highly reliable systems must require

reliable PEs which also need to be addressed. Furthermore, fault-tolerance is still developed inde-

pendently without defining any standards. In fact, this work has briefly shown one of the very first

fault-tolerant designs for multiple types of fault. By standardizing the fault-tolerance, designers

can select and adjust the fault-tolerant techniques to optimize their requirements.

Besides the possible future works for 3D-NoC fault-tolerance, 3D-ICs still have several issues

to address which also make impacts on reliability. For example, heat dissipation and power density

is a critical issue for 3D-ICs. Research on 3D-ICs is also trying to reduce the TSV size or even

using monolithic 3D structures which open new challenges.
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A
Benchmarks

This appendix depicts the details of the used benchmarks in this dissertation. The list and details
of the benchmarks are described in Table A.1.

Table A.1: Description of benchmarks.

Benchmark Description Citation
Transpose Each node (a,b,c) in a network with (X,Y,Z) sends packets

to node (X-a, Y-b, Z-c). See Algorithm A.1 for details.
[157]

Uniform Each node in a network sends packets to all nodes. See
Algorithm A.2 for details.

[158]

Matrix-multiplication Performs C=A*B. Matrix A is stored in layer-1, is sent
to layer-2 which has matrix B. The final values are accu-
mulated in layer-3 as matrix C. See Algorithm A.3 for
details.

[159, 160]

Hotspot 10% Each node in a network sends packets to all nodes. X
(X=1 or 2 or more) nodes have additional 10% amount of
traffic. See Algorithm A.4 for details.

[161]

Realistic Traffic Pat-
tern

Generate from task graphs which provide the connections
(e.g: node A→B) and the traffic (e.g: 100 packets). See
Algorithm A.5 for details.

[162, 163]

A.1 Synthetic Traffic
Algorithm A.1 shows the pseudo-code of transpose benchmark. For each node, its data is sent

to the reversed index node.
Algorithm A.2 shows the pseudo-code of uniform benchmark. For each node, its data is sent

to every nodes in the network.
Algorithm A.3 shows the pseudo-code of matrix benchmark. Matrix A is stored in one layer

and its values are sent to another layer which consists of Matrix B. In the Matrix-B layer, data is
multiplied and sent to the final layer where data are accumulated to obtain the final value.

AlgorithmA.4 shows the pseudo-code of hotspot benchmark. The hostpot benchmark is similar
to uniform benchmark but the hotspot nodes will have extra percentages of data.
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Algorithm A.1: Transpose Algorithm.
// Network
Input: Network(X, Y,Z)
// Amount of data for each communication
Input: D
// Communication set
Output: C = {ci : (source→ destination, amount of data)}

1 foreach node (a,b,c) in Network(X, Y,Z) do
2 add ((a, b, c)→ (X− a− , Y− b− ,Z− c− ), D packets) to C
3 return C

Algorithm A.2: Uniform Algorithm.
// Network
Input: Network(X, Y,Z)
// Amount of data for each communication
Input: D
// Communication set
Output: C = {ci : (source→ destination, amount of data)}

1 foreach node (a,b,c) in Network(X, Y,Z) do
2 foreach node (m,n,p) in Network(X, Y,Z) do
3 add ((a, b, c)→ (m, n, p), D packets) to C

4 return C

A.2 Realistic Traffic Pattern
The realistic traffic pattern benchmark requires task graph and task map in order to perform.

Figure A.1 and A.2 show the task graph and task map for H.264 encoder. Figure A.3, A.4, and
A.5 show the task graph and task map of VOPD, MWD and PIP, respectively.
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Algorithm A.3: Matrix-multiplication Algorithm.
Input: layerA(n, n), layerB(n, n), layerC(n, n),
Input: A(n, n),B(n, n)
Output: C(n, n)

1 foreach node (i,j) in layerA(n, n) do
2 send A(i,j)→ layerB(j,i)
3 foreach node (i,j) in layerB(n, n) do
4 receive A(j,i)
5 R(i, j) = A(j, i)× B(i, j)
6 foreach k in 1:n do
7 send R(i,j)→ layerC(i,k)

8 foreach node (i,j) in layerC(n, n) do
9 foreach k in 1:n do

10 send C(i,j) = C(i,j) + R(k,i)

11 return C(n, n) from layerC(n, n)

Algorithm A.4: Hotspot Algorithm.
// Network
Input: Network(X, Y,Z)
// Amount of data for each communication
Input: D
// Extra percentage of hotspot node
Input: E
// Communication set
Output: C = {ci : (source→ destination, amount of data)}

1 foreach node (a,b,c) in Network(X, Y,Z) do
2 foreach node (m,n,p) in Network(X, Y,Z) do
3 if node (m,n,p) is hotspot node then
4 add ((a, b, c)→ (m, n, p), (D+D*E/100) packets) to C
5 else
6 add ((a, b, c)→ (m, n, p), D packets) to C

7 return C

Algorithm A.5: Realistic Benchmark Algorithm.
Input: Network(X, Y,Z)
// Communication set
Input: C = {ci : (source→ destination,D,O)}

1 ProgramCounter = 0;
2 foreach node (i,j,k) in Network(X, Y,Z) do
3 foreach ci in C do
4 if ci(source) == (i, j, k) and ProgramCounter == O then
5 send (i,j,k)→ ci(destination) with ci(D) packets.
6 if ci(destination) == (i, j, k) and ProgramCounter == O then
7 receive ci(D) packets.

8 if all destinations completedly receive their own ci(D) packets then
9 ProgramCounter++;
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B
TSV Router

The following is the source code of TSV router.
1 ‘ifndef VCS
2 ‘include ”defines.v”
3 ‘endif
4
5 module router_TSV (
6
7 input clk,
8 input reset,
9 input [‘L2NET_SIZE-1:0] xaddr,

10 input [‘L2NET_SIZE-1:0] yaddr,
11 input [‘L2NET_SIZE-1:0] zaddr,
12
13 input [(‘WIDTH*‘NOUT)-1:0] data_in,
14 input [(36)-1:0] faulty_in,
15 input [‘NOUT-1:0] stop_in,
16 input [‘NOUT-1:0] arq_in,
17
18 input [2:0] UP_serial_part_in,
19 input [2:0] DOWN_serial_part_in,
20 input [1:0] UP_sync_bits_in,
21 input [1:0] DOWN_sync_bits_in,
22
23 output [2:0] UP_serial_part_out,
24 output [2:0] DOWN_serial_part_out,
25 output [1:0] UP_sync_bits_out,
26 output [1:0] DOWN_sync_bits_out,
27
28 input [‘NOUT-1:0] f_RAB,
29 input [‘NOUT-1:0] f_XBAR,
30 input [‘NOUT-1:0] f_LINK,
31 input f_trigger,
32 input f_reset,
33 input [2*‘TSV_CLUSTER-1:0] f_TSV,
34
35 output [‘DEBUG_WIDTH+3*‘L2NET_SIZE-1:0] f_flag,
36
37 input EnableUpdate,
38 input [‘WEIGHT*‘TSV_CLUSTER-1:0] NeighborWeight,
39 input [2*‘TSV_CLUSTER-1:0] NeighborTSVStatus_Up,
40 input [‘TSV_CLUSTER-1:0] NeighborRequestLink_Up,
41 input [2*‘TSV_CLUSTER-1:0] NeighborTSVStatus_Down,
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42 input [‘TSV_CLUSTER-1:0] NeighborRequestLink_Down,
43
44 input [2*‘TSV_CLUSTER-1:0] NeighborTSVVirtualState_Up,
45 input [‘TSV_CLUSTER-1:0] NeighborRequestVirtual_Up,
46 input [2*‘TSV_CLUSTER-1:0] NeighborTSVVirtualState_Down,
47 input [‘TSV_CLUSTER-1:0] NeighborRequestVirtual_Down,
48
49 output [‘WIDTH-1:0] Current2Neighbor_up_in,
50 output [‘WIDTH-1:0] Current2Neighbor_down_in,
51 output [‘WIDTH-1:0] Current2Neighbor_up_out,
52 output [‘WIDTH-1:0] Current2Neighbor_down_out,
53
54 input [‘WIDTH-1:0] Neighbor2Current_up_in,
55 input [‘WIDTH-1:0] Neighbor2Current_down_in,
56 input [‘WIDTH-1:0] Neighbor2Current_up_out,
57 input [‘WIDTH-1:0] Neighbor2Current_down_out,
58
59 output [‘WEIGHT-1:0] CurrentWeight,
60 output [2*‘TSV_CLUSTER-1:0] CurrentStatus_Up,
61 output [‘TSV_CLUSTER-1:0] RequestLink_Up,
62 output [2*‘TSV_CLUSTER-1:0] CurrentStatus_Down,
63 output [‘TSV_CLUSTER-1:0] RequestLink_Down,
64
65 input [2*‘TSV_CLUSTER-1:0] NeighborCStatus_Up,
66 input [2*‘TSV_CLUSTER-1:0] NeighborCStatus_Down,
67 output [2*‘TSV_CLUSTER-1:0] CurrentCStatus_Up,
68 output [2*‘TSV_CLUSTER-1:0] CurrentCStatus_Down,
69
70 output [‘TSV_CLUSTER-1:0] RequestVirtual_Up,
71 output [2*‘TSV_CLUSTER-1:0] TSVVirtualState_Up,
72 output [‘TSV_CLUSTER-1:0] RequestVirtual_Down,
73 output [2*‘TSV_CLUSTER-1:0] TSVVirtualState_Down,
74
75 input [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_up_sync_in,
76 output [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_up_sync_out,
77 input [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_down_sync_in,
78 output [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_down_sync_out,
79
80 output [(‘WIDTH*‘NOUT)-1:0] data_out,
81 output [6*‘NOUT-1:0] faulty_out,
82 output [‘NOUT-1:0] stop_out,
83 output [‘NOUT-1:0] arq_out);
84
85 wire [(‘WIDTH*‘NOUT)-1:0] curr_data_in;
86 wire [(36)-1:0] curr_faulty_in;
87 wire [‘NOUT-1:0] curr_stop_in;
88 wire [‘NOUT-1:0] curr_arq_in;
89
90 wire [(‘WIDTH*‘NOUT)-1:0] curr_data_out;
91 wire [6*‘NOUT-1:0] curr_faulty_out;
92 wire [‘NOUT-1:0] curr_stop_out;
93 wire [‘NOUT-1:0] curr_arq_out;
94
95 wire [(‘WIDTH)-1:0] tsv_data_up_in_I,tsv_data_up_in_O;
96 wire [(‘WIDTH)-1:0] tsv_data_down_in_I,tsv_data_down_in_O;
97 wire [(‘WIDTH)-1:0] tsv_data_up_out_I,tsv_data_up_out_O;
98 wire [(‘WIDTH)-1:0] tsv_data_down_out_I,tsv_data_down_out_O;
99

100 wire [‘WEIGHT-1:0] CurrentWeightX;
101
102 wire [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_up_in;
103 wire [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_up_out;
104 wire [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_down_in;
105 wire [(‘TSV_CLUSTER+2)*‘TSV_CLUSTER-1:0] config_down_out;
106
107 wire TSVinUsage_Up, TSVinUsage_Down;
108 wire TSVReq_Up, TSVReq_Down;
109 wire UpGrant, DownGrant;
110
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111 wire [1:0] UpConnectionStatus;
112 wire [1:0] DownConnectionStatus;
113
114 assign CurrentCStatus_Up = UpConnectionStatus;
115 assign CurrentCStatus_Down = DownConnectionStatus;
116
117 assign config_up_sync_out = config_up_out;
118 assign config_up_in = config_up_sync_in;
119
120 router
121 router_ori (
122 .clk (clk ),
123 .reset (reset ),
124 .data_in (curr_data_in ),
125 .data_out (curr_data_out ),
126 .stop_in (curr_stop_in ),
127 .stop_out (curr_stop_out ),
128 .faulty_in (curr_faulty_in ),
129 .faulty_out (curr_faulty_out ),
130 .f_RAB (f_RAB ),
131 .f_XBAR (f_XBAR ),
132 .f_LINK (f_LINK ),
133 .f_trigger (f_trigger ),
134 .f_flag (f_flag ),
135 .f_reset (f_reset ),
136 .arq_out (curr_arq_out ),
137 .arq_in (curr_arq_in ),
138 .UP_serial_part_in (UP_serial_part_in ),
139 .UP_sync_bits_in (UP_sync_bits_in ),
140 .DOWN_serial_part_in (DOWN_serial_part_in ),
141 .DOWN_sync_bits_in (DOWN_sync_bits_in ),
142 .UP_serial_part_out (UP_serial_part_out ),
143 .UP_sync_bits_out (UP_sync_bits_out ),
144 .DOWN_serial_part_out (DOWN_serial_part_out),
145 .DOWN_sync_bits_out (DOWN_sync_bits_out ),
146 .UpReq (TSVReq_Up ),
147 .DownReq (TSVReq_Down ),
148 .UpGrant (UpGrant ),
149 .DownGrant (DownGrant ),
150 .UpInUsage (TSVinUsage_Up ),
151 .DownInUsage (TSVinUsage_Down ),
152 .UpConnectionStatus (UpConnectionStatus ),
153 .DownConnectionStatus (DownConnectionStatus),
154 .xaddr (xaddr ),
155 .yaddr (yaddr ),
156 .zaddr (zaddr ));
157
158 TSV_cntrl TSV_cntrl_up(
159 .clk (clk ),
160 .reset (reset ),
161 .xaddr (xaddr ),
162 .yaddr (yaddr ),
163 .zaddr (zaddr ),
164 .EnableUpdate (EnableUpdate ),
165 .f_TSV (f_TSV[‘TSV_CLUSTER-1:0] ),
166 .NeighborWeight (NeighborWeight ),
167 .NeighborRequestLink (NeighborRequestLink_Up ),
168 .NeighborTSVStatus (NeighborTSVStatus_Up ),
169 .NeighborCStatus (NeighborCStatus_Up ),
170 .CurrentWeight (CurrentWeight ),
171 .CurrentStatus (CurrentStatus_Up ),
172 .RequestLink (RequestLink_Up ),
173 .ConnectionStatus (UpConnectionStatus ),
174 .RequestVirtual (RequestVirtual_Up ),
175 .NextTSVVirtualState (TSVVirtualState_Up ),
176 .NeighborTSVVirtualState (NeighborTSVVirtualState_Up),
177 .NeighborRequestVirtual (NeighborRequestVirtual_Up ),
178 .serial_part (UP_serial_part_out ),
179 .TSVinUsage (TSVinUsage_Up ),
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180 .TSVReq (TSVReq_Up ),
181 .TSVGrant (UpGrant ),
182 .config_out (config_up_out ));
183
184 TSV_cntrl TSV_cntrl_down(
185 .clk (clk ),
186 .reset (reset ),
187 .xaddr (xaddr ),
188 .yaddr (yaddr ),
189 .zaddr (zaddr ),
190 .EnableUpdate (EnableUpdate ),
191 .f_TSV (f_TSV[2*‘TSV_CLUSTER-1:‘TSV_CLUSTER]),
192 .NeighborWeight (NeighborWeight ),
193 .NeighborRequestLink (NeighborRequestLink_Down ),
194 .NeighborTSVStatus (NeighborTSVStatus_Down ),
195 .CurrentWeight (CurrentWeightX ),
196 .NeighborCStatus (NeighborCStatus_Down ),
197 .CurrentStatus (CurrentStatus_Down ),
198 .RequestLink (RequestLink_Down ),
199 .ConnectionStatus (DownConnectionStatus ),
200 .RequestVirtual (RequestVirtual_Down ),
201 .NextTSVVirtualState (TSVVirtualState_Down ),
202 .NeighborTSVVirtualState (NeighborTSVVirtualState_Down ),
203 .NeighborRequestVirtual (NeighborRequestVirtual_Down ),
204 .TSVinUsage (TSVinUsage_Down ),
205 .serial_part (DOWN_serial_part_out ),
206 .TSVReq (TSVReq_Down ),
207 .TSVGrant (DownGrant ),
208 .config_out (config_down_out ));
209
210 assign config_down_sync_out = config_down_out;
211 assign config_down_in = config_down_sync_in;
212
213 assign curr_data_in[(‘WIDTH*5-1):0] = data_in[(‘WIDTH*5-1):0];
214 assign curr_faulty_in = faulty_in;
215 assign curr_stop_in = stop_in;
216 assign curr_arq_in = arq_in;
217
218 assign data_out[(‘WIDTH*5-1):0] = curr_data_out[(‘WIDTH*5-1):0];
219 assign faulty_out = curr_faulty_out;
220 assign stop_out = curr_stop_out;
221 assign arq_out = curr_arq_out;
222
223 genvar x,y;
224 generate for (x=0; x<‘WIDTH; x=x+1) begin:UD_port
225 TSV tsv_input_up (.i(tsv_data_up_in_I[x]), .o(tsv_data_up_in_O[x]));
226 TSV tsv_input_down (.i(tsv_data_down_in_I[x]), .o(tsv_data_down_in_O[x]));
227 TSV tsv_output_up (.i(tsv_data_up_out_I[x]), .o(tsv_data_up_out_O[x]));
228 TSV tsv_output_down (.i(tsv_data_down_out_I[x]), .o(tsv_data_down_out_O[x]));
229 end
230 endgenerate
231
232 assign tsv_data_up_in_I = data_in[‘WIDTH*6-1:‘WIDTH*5];
233 assign tsv_data_down_in_I = data_in[‘WIDTH*7-1:‘WIDTH*6];
234
235 assign data_out[‘WIDTH*6-1:‘WIDTH*5] = tsv_data_up_out_O;
236 assign data_out[‘WIDTH*7-1:‘WIDTH*6] = tsv_data_down_out_O;
237
238 genvar cluster;
239 generate for (cluster = 0; cluster <‘TSV_CLUSTER; cluster=cluster+1) begin: TSV_CLUSTER_CONFIG
240 tristate_gates_in up_in (
241 .config_reg (config_up_in[(cluster+1)*(‘TSV_CLUSTER+2)-1:cluster*(‘TSV_CLUSTER+2)] ),
242 .datfTSV (tsv_data_up_in_O[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] ),
243 .datfNeigh (Neighbor2Current_up_in ),
244 .current_dat_out (curr_data_in[(‘WIDTH*5+(cluster+1)*‘WIDTH/4-1):(‘WIDTH*5+cluster*‘WIDTH/4)]),
245 .neighbor_dat_out (Current2Neighbor_up_in[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] )
246 );
247 tristate_gates_in down_in (
248 .config_reg (config_down_in[(cluster+1)*(‘TSV_CLUSTER+2)-1:cluster*(‘TSV_CLUSTER+2)] ),
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249 .datfTSV (tsv_data_down_in_O[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] ),
250 .datfNeigh (Neighbor2Current_down_in ),
251 .current_dat_out (curr_data_in[(‘WIDTH*6+(cluster+1)*‘WIDTH/4-1):(‘WIDTH*6+cluster*‘WIDTH/4)]),
252 .neighbor_dat_out (Current2Neighbor_down_in[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] )
253 );
254 tristate_gates_out #(cluster) up_out (
255 .config_reg (config_up_out[(cluster+1)*(‘TSV_CLUSTER+2)-1:cluster*(‘TSV_CLUSTER+2)] ),
256 .current_dat_in (curr_data_out[(‘WIDTH*5+(cluster+1)*‘WIDTH/4-1):(‘WIDTH*5+cluster*‘WIDTH/4)]),
257 .neighbor_dat_in (Neighbor2Current_up_out[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] ),
258 .dat2Neigh (Current2Neighbor_up_out ),
259 .dat2TSV (tsv_data_up_out_I[‘WIDTH*(cluster+1)/4-1:‘WIDTH*cluster/4] )
260 );
261 tristate_gates_out #(cluster) down_out (
262 .config_reg (config_down_out[(cluster+1)*(‘TSV_CLUSTER+2)-1:cluster*(‘TSV_CLUSTER+2)] ),
263 .current_dat_in (curr_data_out[(‘WIDTH*6+(cluster+1)*‘WIDTH/4-1):(‘WIDTH*6+cluster*‘WIDTH/4)]),
264 .neighbor_dat_in (Neighbor2Current_down_out[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] ),
265 .dat2Neigh (Current2Neighbor_down_out ),
266 .dat2TSV (tsv_data_down_out_I[‘WIDTH*(cluster+1)/4-1:‘WIDTH*cluster/4] )
267 );
268
269 assign Current2Neighbor_up_out[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] = (config_up_out[cluster

+2+0*(‘TSV_CLUSTER+2)] == 1’b0 &&
270 config_up_out[cluster+2+1*(‘TSV_CLUSTER+2)] == 1’b0 && config_up_out[cluster+2+2*(‘TSV_CLUSTER+2)]

== 1’b0 && config_up_out[cluster+2+3*(‘TSV_CLUSTER+2)] == 1’b0)? 0:{‘WIDTH/4{1’bZ}};
271 assign Current2Neighbor_down_out[((cluster+1)*‘WIDTH/4-1):(cluster*‘WIDTH/4)] = (config_down_out[

cluster+2+0*(‘TSV_CLUSTER+2)] == 1’b0 &&
272 config_down_out[cluster+2+1*(‘TSV_CLUSTER+2)] == 1’b0 && config_down_out[cluster+2+2*(‘TSV_CLUSTER

+2)] == 1’b0 && config_down_out[cluster+2+3*(‘TSV_CLUSTER+2)] == 1’b0)? 0:{‘WIDTH/4{1’bZ}};
273 end
274 endgenerate
275 endmodule

Listing B.1: TSV Router.
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